scholarly journals Differential Efficacy of Novel Antiviral Substances in 3D and Monolayer Cell Culture

Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1294
Author(s):  
Robert Koban ◽  
Markus Neumann ◽  
Philipp P. Nelson ◽  
Heinz Ellerbrok

Repurposing of approved drugs that target host functions also important for virus replication promises to overcome the shortage of antiviral therapeutics. Mostly, virus biology including initial screening of antivirals is studied in conventional monolayer cells. The biology of these cells differs considerably from infected tissues. 3D culture models with characteristics of human tissues may reflect more realistically the in vivo events during infection. We screened first, second, and third generation epidermal growth factor receptor (EGFR)-inhibitors with different modes of action and the EGFR-blocking monoclonal antibody cetuximab in a 3D cell culture infection model with primary human keratinocytes and cowpox virus (CPXV) for antiviral activity. Antiviral activity of erlotinib and osimertinib was nearly unaffected by the cultivation method similar to the virus-directed antivirals tecovirimat and cidofovir. In contrast, the host-directed inhibitors afatinib and cetuximab were approx. 100-fold more efficient against CPXV in the 3D infection model, similar to previous results with gefitinib. In summary, inhibition of EGFR-signaling downregulates virus replication comparable to established virus-directed antivirals. However, in contrast to virus-directed inhibitors, in vitro efficacy of host-directed antivirals might be seriously affected by cell cultivation. Results obtained for afatinib and cetuximab suggest that screening of such drugs in standard monolayer culture might underestimate their potential as antivirals.

2021 ◽  
Vol 66 (2) ◽  
pp. 123-128
Author(s):  
S. Ya. Loginova ◽  
V. N. Shсhukina ◽  
S. V. Savenko ◽  
S. V. Borisevich

Introduction. The pandemic spread of a new coronavirus infection, COVID-19, has caused a global emergency and attracted the attention of public health professionals and the population of all countries. A significant increase in the number of new cases of SARS-CoV-2 infection demonstrates the urgency of finding drugs effective against this pathogen.The aim of this work was to evaluate the in vitro antiviral efficacy of human recombinant alpha-2b interferon (IFN-α2b) against SARS-CoV-2 virus.Material and methods. The experiments had been carried out on Vero Cl008, the continuous line of African green monkey (Chlorocebus sabaeus) kidney cells. The effectiveness of the drugs was assessed by the suppression of viral reproduction in vitro. The biological activity was determined using titration of a virus-containing suspension in a Vero Cl008 cell culture by the formation of negative colonies.Results. The antiviral efficacy of the IFN-α2b-based medications, which have a high safety profile and proven efficacy in the prevention and treatment of influenza and acute respiratory viral infections (ARVI), has been studied against the new pandemic SARS-CoV-2 virus in vitro experiments in Vero C1008 cell culture. IFN-α2b effectively inhibits the reproduction of the virus when applied both 24 hrs before and 2 hrs after infection. In the IFN-α2b concentration range 102–106 IU/ml a complete suppression of the reproduction of the SARS-CoV-2 virus had been demonstrated.Discussion. IFN-α2b demonstrated in vitro high antiviral activity against SARS-CoV-2. In addition, the substance has a high chemotherapeutic index (>1000).Conclusion. Medications for intranasal use based on IFN-α2b have high antiviral activity and are promising drugs for in vivo study in terms of prevention and treatment of COVID-19.


Author(s):  
Shuangshuang Wang ◽  
Hua Qian ◽  
Liwei Zhang ◽  
Panpan Liu ◽  
Dexuan Zhuang ◽  
...  

Mutations of H-Ras, a member of the RAS family, are preferentially found in cutaneous squamous cell carcinomas (SCCs). H-Ras has been reported to induce autophagy, which plays an essential role in tissue homeostasis in multiple types of cancer cells and in fibroblasts, however, the potential role of H-Ras in regulating autophagy in human keratinocytes has not been reported. In this study, we found that the stable expression of the G12V mutant of H-RAS (H-RasG12V) induced autophagy in human keratinocytes, and interestingly, the induction of autophagy was strongly blocked by inhibiting the calcineurin/nuclear factor of activated T cells (NFAT) pathway with either a calcineurin inhibitor (Cyclosporin A) or a NFAT inhibitor (VIVIT), or by the small interfering RNA (siRNA) mediated knockdown of calcineurin B1 or NFATc1 in vitro, as well as in vivo. To characterize the role of the calcineurin/NFAT pathway in H-Ras induced autophagy, we found that H-RasG12V promoted the nuclear translocation of NFATc1, an indication of the activation of the calcineurin/NFAT pathway, in human keratinocytes. However, activation of NFATc1 either by the forced expression of NFATc1 or by treatment with phenformin, an AMPK activator, did not increase the formation of autophagy in human keratinocytes. Further study revealed that inhibiting the calcineurin/NFAT pathway actually suppressed H-Ras expression in H-RasG12V overexpressing cells. Finally, chromatin immunoprecipitation (ChIP) assays showed that NFATc1 potentially binds the promoter region of H-Ras and the binding efficiency was significantly enhanced by the overexpression of H-RasG12V, which was abolished by treatment with the calcineurin/NFAT pathway inhibitors cyclosporine A (CsA) or VIVIT. Taking these data together, the present study demonstrates that the calcineurin/NFAT signaling pathway controls H-Ras expression and interacts with the H-Ras pathway, involving the regulation of H-Ras induced autophagy in human keratinocytes.


2017 ◽  
Author(s):  
Ajay Mishra ◽  
Angela Oliveira Pisco ◽  
Benedicte Oules ◽  
Tony Ly ◽  
Kifayathullah Liakath-Ali ◽  
...  

AbstractEpidermal homeostasis depends on a balance between stem cell renewal and terminal differentiation1,2. While progress has been made in characterising the stem and differentiated cell compartments3, the transition between the two cell states, termed commitment4, is poorly understood. Here we characterise commitment by integrating transcriptomic and proteomic data from disaggregated primary human keratinocytes held in suspension for up to 12h. We have previously shown that commitment begins at approximately 4h and differentiation is initiated by 8h5. We find that cell detachment induces a network of protein phosphatases. The pro-commitment phosphatases – including DUSP6, PPTC7, PTPN1, PTPN13 and PPP3CA – promote terminal differentiation by negatively regulating ERK MAPK and positively regulating key API transcription factors. Their activity is antagonised by concomitant upregulation of the anti-commitment phosphatase DUSP10. The phosphatases form a dynamic network of transient positive and negative interactions, with DUSP6 predominating at commitment. Boolean network modelling identifies a mandatory switch between two stable states (stem cell and differentiated cell) via an unstable (committed) state. In addition phosphatase expression is spatially regulated relative to the location of stem cells, both in vivo and in response to topographical cues in vitro. We conclude that an auto-regulatory phosphatase network maintains epidermal homeostasis by controlling the onset and duration of commitment.


2020 ◽  
Vol 117 (14) ◽  
pp. 8083-8093 ◽  
Author(s):  
Un Yung Choi ◽  
Jae Jin Lee ◽  
Angela Park ◽  
Wei Zhu ◽  
Hye-Ra Lee ◽  
...  

Three-dimensional (3D) cell culture is well documented to regain intrinsic metabolic properties and to better mimic the in vivo situation than two-dimensional (2D) cell culture. Particularly, proline metabolism is critical for tumorigenesis since pyrroline-5-carboxylate (P5C) reductase (PYCR/P5CR) is highly expressed in various tumors and its enzymatic activity is essential for in vitro 3D tumor cell growth and in vivo tumorigenesis. PYCR converts the P5C intermediate to proline as a biosynthesis pathway, whereas proline dehydrogenase (PRODH) breaks down proline to P5C as a degradation pathway. Intriguingly, expressions of proline biosynthesisPYCRgene and proline degradationPRODHgene are up-regulated directly by c-Myc oncoprotein and p53 tumor suppressor, respectively, suggesting that the proline-P5C metabolic axis is a key checkpoint for tumor cell growth. Here, we report a metabolic reprogramming of 3D tumor cell growth by oncogenic Kaposi’s sarcoma-associated herpesvirus (KSHV), an etiological agent of Kaposi’s sarcoma and primary effusion lymphoma. Metabolomic analyses revealed that KSHV infection increased nonessential amino acid metabolites, specifically proline, in 3D culture, not in 2D culture. Strikingly, the KSHV K1 oncoprotein interacted with and activated PYCR enzyme, increasing intracellular proline concentration. Consequently, the K1-PYCR interaction promoted tumor cell growth in 3D spheroid culture and tumorigenesis in nude mice. In contrast, depletion ofPYCRexpression markedly abrogated K1-induced tumor cell growth in 3D culture, not in 2D culture. This study demonstrates that an increase of proline biosynthesis induced by K1-PYCR interaction is critical for KSHV-mediated transformation in in vitro 3D culture condition and in vivo tumorigenesis.


2019 ◽  
Vol 25 (34) ◽  
pp. 3599-3607 ◽  
Author(s):  
Adeeb Shehzad ◽  
Vijaya Ravinayagam ◽  
Hamad AlRumaih ◽  
Meneerah Aljafary ◽  
Dana Almohazey ◽  
...  

: The in-vitro experimental model for the development of cancer therapeutics has always been challenging. Recently, the scientific revolution has improved cell culturing techniques by applying three dimensional (3D) culture system, which provides a similar physiologically relevant in-vivo model for studying various diseases including cancer. In particular, cancer cells exhibiting in-vivo behavior in a model of 3D cell culture is a more accurate cell culture model to test the effectiveness of anticancer drugs or characterization of cancer cells in comparison with two dimensional (2D) monolayer. This study underpins various factors that cause resistance to anticancer drugs in forms of spheroids in 3D in-vitro cell culture and also outlines key challenges and possible solutions for the future development of these systems.


2003 ◽  
Vol 77 (10) ◽  
pp. 6050-6054 ◽  
Author(s):  
Masato Hatta ◽  
Yoshihiro Kawaoka

ABSTRACT The NB protein of influenza B virus is thought to function as an ion channel and therefore would be expected to have an essential function in viral replication. Because direct evidence for its absolute requirement in the viral life cycle is lacking, we generated NB knockout viruses by reverse genetics and tested their growth properties both in vitro and in vivo. Mutants not expressing NB replicated as efficiently as the wild-type virus in cell culture, whereas in mice they showed restricted growth compared with findings for the wild-type virus. Thus, the NB protein is not essential for influenza B virus replication in cell culture but promotes efficient growth in mice.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 569
Author(s):  
Seung-Jun Lee ◽  
Perry Ayn Mayson A Maza ◽  
Gyu-Min Sun ◽  
Petr Slama ◽  
In-Jeong Lee ◽  
...  

In this study, we developed a three-dimensional (3D) in vitro infection model to investigate the crosstalk between phagocytes and microbes in inflammation using a nanofibrous membrane (NM). Poly(ε-caprolactone) (PCL)-NMs (PCL-NMs) were generated via electrospinning of PCL in chloroform. Staphylococcus aureus and phagocytes were able to adhere to the nanofibers and phagocytes engulfed S. aureus in the PCL-NM. The migration of phagocytes to S. aureus was evaluated in a two-layer co-culture system using PCL-NM. Neutrophils, macrophages and dendritic cells (DCs) cultured in the upper PCL-NM layer migrated to the lower PCL-NM layer containing bacteria. DCs migrated to neutrophils that cultured with bacteria and then engulfed neutrophils in two-layer system. In addition, phagocytes in the upper PCL-NM layer migrated to bacteria-infected MLE-12 lung epithelial cells in the lower PCL-NM layer. S. aureus-infected MLE-12 cells stimulated the secretion of tumor necrosis factor-α and IL-1α in 3D culture conditions, but not in 2D culture conditions. Therefore, the PCL-NM-based 3D culture system with phagocytes and bacteria mimics the inflammatory response to microbes in vivo and is applicable to the biomimetic study of various microbe infections.


2002 ◽  
Vol 83 (4) ◽  
pp. 873-878 ◽  
Author(s):  
Nicola Price ◽  
David C. Tscharke ◽  
Geoffrey L. Smith

Vaccinia virus (VV) strain Western Reserve gene B9R is shown to encode an intracellular 6 kDa protein that is expressed late during the infectious cycle. In vitro transcription and translation produced two polypeptides in the presence of microsomal membranes, but only the larger protein in the absence of membranes. The smaller protein sedimented with microsomes during centrifugation, suggesting it was inserted into the lipid membrane or into the microsomal lumen via the N-terminal hydrophobic signal sequence that was subsequently cleaved proteolytically. A VV mutant lacking B9R was constructed and found to replicate normally in cell culture and two in vivo models.


2021 ◽  
Author(s):  
Aleksandr Ianevski ◽  
Rouan Yo ◽  
Hilde Lysvand ◽  
Gunnveig Grodeland ◽  
Nicolas Legrand ◽  
...  

SARS-CoV-2 and its vaccine/immune-escaping variants continue to pose a serious threat to public health due to a paucity of effective, rapidly deployable, and widely available treatments. Here we address these challenges by combining Pegasys (IFNa) and nafamostat to effectively suppress SARS-CoV-2 infection in cell culture and hamsters. Our results indicate that Serpin E1 is an important mediator of the antiviral activity of IFNa and that both Serpin E1 and camostat can target the same cellular factor TMPRSS2, which plays a critical role in viral replication. The low doses of the drugs in combination may have several clinical advantages, including fewer adverse events and improved patient outcome. Thus, our study may provide a proactive solution for the ongoing pandemic and potential future coronavirus outbreaks, which is still urgently required in many parts of the world.


2020 ◽  
Author(s):  
Cheng-Li Lin ◽  
Yi-Ting Kuo ◽  
Che-Hao Tsao ◽  
Yan-Jye Shyong ◽  
Shu-Hsien Shih ◽  
...  

Abstract Background Ligamentum flavum hypertrophy (LFH) is one of the most crucial factors in degenerative lumbar spinal stenosis, which can cause back pain, lower extremity pain, cauda equina syndrome and neurogenic claudication. The exact pathogenesis of LFH remains elusive, despite extensive research. Most in vitro studies of LFH have been carried out using conventional 2D cell cultures, which do not resemble in vivo conditions, as they lack crucial pathophysiological factors found in three-dimensional (3D) LFH tissue, such as enhanced cell proliferation and cell cluster formation. In this study, we generated LF clusters using spheroid cultures derived from primary LFH tissue. Results The cultured LF spheroids exhibited good viability and growth on the ULA 96-plate platform according to live/dead staining. Our results showed that 100-cell culture continued to grow in size, while 1000-cell culture maintained the size and 5000-cell culture exhibited a decreasing trend as the culture time increased, and long-term culture was validated for at least 28 days. The LF spheroids also maintained the extracellular matrix (ECM) phenotype, i.e. fibronectin, elastin, and collagen I and III. 2D culture and 3D culture were further compared by cell cycle and Western blot analyses. Finally, we utilized hematoxylin and eosin (H&E) staining to demonstrate 3D spheroids has resembled part of the cell arrangement in LF hypertrophic tissue. Conclusions The developed LF spheroid model has great potential, as it provides a stable culture platform in a 3D model that can further improve our understanding of the pathogenesis of LFH and has applications in future studies.


Sign in / Sign up

Export Citation Format

Share Document