scholarly journals Type II Grass Carp Reovirus Infects Leukocytes but Not Erythrocytes and Thrombocytes in Grass Carp (Ctenopharyngodon idella)

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 870
Author(s):  
Ling Yang ◽  
Jianguo Su

Grass carp reovirus (GCRV) causes serious losses to the grass carp industry. At present, infectious tissues of GCRV have been studied, but target cells remain unclear. In this study, peripheral blood cells were isolated, cultured, and infected with GCRV. Using quantitative real-time polymerase chain reaction (qRT-PCR), Western Blot, indirect immunofluorescence, flow cytometry, and transmission electron microscopy observation, a model of GCRV infected blood cells in vitro was established. The experimental results showed GCRV could be detectable in leukocytes only, while erythrocytes and thrombocytes could not. The virus particles in leukocytes are wrapped by empty membrane vesicles that resemble phagocytic vesicles. The empty membrane vesicles of leukocytes are different from virus inclusion bodies in C. idella kidney (CIK) cells. Meanwhile, the expression levels of IFN1, IL-1β, Mx2, TNFα were significantly up-regulated in leukocytes, indicating that GCRV could cause the production of the related immune responses. Therefore, GCRV can infect leukocytes in vitro, but not infect erythrocytes and thrombocytes. Leukocytes are target cells in blood cells of GCRV infections. This study lays a theoretical foundation for the study of the GCRV infection mechanism and anti-GCRV immunity.

Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 41
Author(s):  
Changyong Mu ◽  
Qiwang Zhong ◽  
Yan Meng ◽  
Yong Zhou ◽  
Nan Jiang ◽  
...  

The grass carp reovirus (GCRV) causes severe hemorrhagic disease with high mortality and leads to serious economic losses in the grass carp (Ctenopharyngodon idella) industry in China. Oral vaccine has been proven to be an effective method to provide protection against fish viruses. In this study, a recombinant baculovirus BmNPV-VP35-VP4 was generated to express VP35 and VP4 proteins from GCRV type Ⅱ via Bac-to-Bac baculovirus expression system. The expression of recombinant VP35-VP4 protein (rVP35-VP4) in Bombyx mori embryo cells (BmE) and silkworm pupae was confirmed by Western blotting and immunofluorescence assay (IFA) after infection with BmNPV-VP35-VP4. To vaccinate the grass carp by oral route, the silkworm pupae expressing the rVP35-VP4 proteins were converted into a powder after freeze-drying, added to artificial feed at 5% and fed to grass carp (18 ± 1.5 g) for six weeks, and the immune response and protective efficacy in grass carp after oral vaccination trial was thoroughly investigated. This included blood cell counting and classification, serum antibody titer detection, immune-related gene expression and the relative percent survival rate in immunized grass carp. The results of blood cell counts show that the number of white blood cells in the peripheral blood of immunized grass carp increased significantly from 14 to 28 days post-immunization (dpi). The differential leukocyte count of neutrophils and monocytes were significantly higher than those in the control group at 14 dpi. Additionally, the number of lymphocytes increased significantly and reached a peak at 28 dpi. The serum antibody levels were significantly increased at Day 14 and continued until 42 days post-vaccination. The mRNA expression levels of immune-related genes (IFN-1, TLR22, IL-1β, MHC I, Mx and IgM) were significantly upregulated in liver, spleen, kidney and hindgut after immunization. Four weeks post-immunization, fish were challenged with virulent GCRV by intraperitoneal injection. The results of this challenge study show that orally immunized group exhibited a survival rate of 60% and relative percent survival (RPS) of 56%, whereas the control group had a survival rate of 13% and RPS of 4%. Taken together, our results demonstrate that the silkworm pupae powder containing baculovirus-expressed VP35-VP4 proteins could induce both non-specific and specific immune responses and protect grass carp against GCRV infection, suggesting it could be used as an oral vaccine.


2019 ◽  
Vol 20 (7) ◽  
pp. 1687 ◽  
Author(s):  
Denghui Zhu ◽  
Rong Huang ◽  
Peipei Fu ◽  
Liangming Chen ◽  
Lifei Luo ◽  
...  

Basic leucine zipper transcription factor ATF-like (BATF)-3, belonging to activator protein 1 (AP-1) superfamily transcription factors, is essential for homeostatic development of CD8α+ classical dendritic cells activating CD8 T-cell responses to intracellular pathogens. In this study, the characteristics and cDNA cloning of the CiBATF3 molecule were described in grass carp (Ctenopharyngodon idella). CiBATF3 had abundant expression in immune-related organizations, including liver, spleen and gill, and grass carp reovirus (GCRV) infection had significantly changed its expression level. After Ctenopharyngodon idella kidney (CIK) cells were challenged with pathogen-associated molecular patterns (PAMPs), polyinosinic:polycytidylic acid (poly(I:C)) stimulation induced higher mRNA levels of CiBATF3 than that of lipopolysaccharide (LPS). Subcellular localization showed that CiBATF3-GFP was entirely distributed throughout cells and nuclear translocation of CiBATF3 was found after poly(I:C) treatment. Additionally, the interaction between CiBATF3 and interleukin 10 (IL-10) was proven by bimolecular fluorescence complementation (BiFC) system. The small interfering RNA (siRNA)-mediated CiBATF3 silencing showed that the mRNA of CiBATF3 and its downstream genes were down-regulated in vitro and in vivo. CiBATF3 played a negative regulatory role in the transcriptional activities of AP-1 and NF-κB reporter gene. In summary, the results may provide valuable information on fundamental functional mechanisms of CiBATF3.


Sign in / Sign up

Export Citation Format

Share Document