scholarly journals An Update on Innate Immune Responses during SARS-CoV-2 Infection

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2060
Author(s):  
Yu Zhang ◽  
Shuaiyin Chen ◽  
Yuefei Jin ◽  
Wangquan Ji ◽  
Weiguo Zhang ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the Coronaviridae family, which is responsible for the COVID-19 pandemic followed by unprecedented global societal and economic disruptive impact. The innate immune system is the body’s first line of defense against invading pathogens and is induced by a variety of cellular receptors that sense viral components. However, various strategies are exploited by SARS-CoV-2 to disrupt the antiviral innate immune responses. Innate immune dysfunction is characterized by the weak generation of type I interferons (IFNs) and the hypersecretion of pro-inflammatory cytokines, leading to mortality and organ injury in patients with COVID-19. This review summarizes the existing understanding of the mutual effects between SARS-CoV-2 and the type I IFN (IFN-α/β) responses, emphasizing the relationship between host innate immune signaling and viral proteases with an insight on tackling potential therapeutic targets.

Reproduction ◽  
2017 ◽  
Vol 153 (6) ◽  
pp. 821-834 ◽  
Author(s):  
Keqin Yan ◽  
Dingqing Feng ◽  
Jing Liang ◽  
Qing Wang ◽  
Lin Deng ◽  
...  

Viral infections of the ovary may perturb ovarian functions. However, the mechanisms underlying innate immune responses in the ovary are poorly understood. The present study demonstrates that cytosolic viral DNA sensor signaling initiates the innate immune response in mouse ovarian granulosa cells and affects endocrine function. The cytosolic DNA sensors p204 and cGAS and their common signaling adaptor stimulator of interferon (IFN) genes (STING) were constitutively expressed in granulosa cells. Transfection with VACV70, a synthetic vaccinia virus (VACV) DNA analog, induced the expression of type I interferons (IFNA/B) and major inflammatory cytokines (TNFA and IL6) through IRF3 and NF-κB activation respectively. Moreover, several IFN-inducible antiviral proteins, including 2′,5′-oligoadenylate synthetase, IFN-stimulating gene 15 and Mx GTPase 1, were also induced by VACV70 transfection. The innate immune responses in granulosa cells were significantly reduced by the transfection of specific small-interfering RNAs targeting p204, cGas or Sting. Notably, the VACV70-triggered innate immune responses affected steroidogenesis in vivo and in vitro. The data presented in this study describe the mechanism underlying ovarian immune responses to viral infection.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuena Sun ◽  
Lei Zhang ◽  
Ling Hong ◽  
Weiwei Zheng ◽  
Junxia Cui ◽  
...  

Upon recognition of bacterial or viral components by Toll-like receptors (TLRs), cells could be activated to induce a series of reactions to produce inflammatory cytokines, type I interferon (IFN), and IFN stimulating genes (ISG). MicroRNAs (miRNAs) are an important regulatory molecules that are widely involved in the regulatory networks of mammalian inflammation and immune responses; however, in lower vertebrates, the regulatory network of miRNA-mediated immune responses is poorly understood. Here, we report two miRNAs form Miichthys miiuy, namely, miR-181b-2 and miR-21-1, that play a negative role in host antiviral and antibacterial immunity. We found that miR-181b-2 and miR-21-1 are abundantly expressed in gram-negative bacteria, as well as RNA rhabdovirus infection. Inducible miR-181b-2 and miR-21-1 suppress the production of inflammatory cytokines and type I IFN by targeting TRIF, thereby avoiding excessive inflammation. We further revealed that miR-181b-2 and miR-21-1 modulate antibacterial and antiviral immunity through the TRIF-mediated NF-κB and IRF3 signaling pathways. The overall results indicate that miR-181b-2 and miR-21-1 act as negative feedback regulators and participate in host antibacterial and antiviral immune responses; this finding could provide information for a deeper understanding of the resistance of lower vertebrates to the invasion of pathogens and to avoidance of excessive immunity.


2021 ◽  
Vol 22 (24) ◽  
pp. 13232
Author(s):  
Wanglong Zheng ◽  
Nengwen Xia ◽  
Jiajia Zhang ◽  
Nanhua Chen ◽  
François Meurens ◽  
...  

The cGAS–STING pathway is a key component of the innate immune system and exerts crucial roles in the detection of cytosolic DNA and invading pathogens. Accumulating evidence suggests that the intrinsic cGAS–STING pathway not only facilitates the production of type I interferons (IFN-I) and inflammatory responses but also triggers autophagy. Autophagy is a homeostatic process that exerts multiple effects on innate immunity. However, systematic evidence linking the cGAS–STING pathway and autophagy is still lacking. Therefore, one goal of this review is to summarize the known mechanisms of autophagy induced by the cGAS–STING pathway and their consequences. The cGAS–STING pathway can trigger canonical autophagy through liquid-phase separation of the cGAS–DNA complex, interaction of cGAS and Beclin-1, and STING-triggered ER stress–mTOR signaling. Furthermore, both cGAS and STING can induce non-canonical autophagy via LC3-interacting regions and binding with LC3. Subsequently, autophagy induced by the cGAS–STING pathway plays crucial roles in balancing innate immune responses, maintaining intracellular environmental homeostasis, alleviating liver injury, and limiting tumor growth and transformation.


2021 ◽  
Author(s):  
Wangsheng Ji ◽  
Lianfei Zhang ◽  
Xiaoyu Xu ◽  
Xinqi Liu

Stimulator of IFN genes (STING), an endoplasmic reticulum (ER) signaling adaptor, is essential for the type I interferon response to cytosolic dsDNA. The translocation from the ER to perinuclear vesicles following binding cGAMP is a critical step for STING to activate downstream signaling molecules, which lead to the production of interferon and pro-inflammatory cytokines. Here we found that apoptosis-linked gene 2 (ALG2) suppressed STING signaling induced by either HSV-1 infection or cGAMP presence. Knockout of ALG2 markedly facilitated the expression of type I interferons upon cGAMP treatment or HSV-1 infection in THP-1 monocytes. Mechanistically, ALG2 associated with the C-terminal tail (CTT) of STING and inhibited its trafficking from ER to perinuclear region. Furthermore, the ability of ALG2 to coordinate calcium was crucial for its regulation of STING trafficking and DNA-induced innate immune responses. This work suggests that ALG2 is involved in DNA-induced innate immune responses by regulating STING trafficking.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Wu ◽  
Caoqi Lei ◽  
Tian Xia ◽  
Xuan Zhong ◽  
Qing Yang ◽  
...  

Abstract TIR domain-containing adaptor inducing interferon-β (TRIF) is an essential adaptor protein required for innate immune responses mediated by Toll-like receptor (TLR) 3- and TLR4. Here we identify USP19 as a negative regulator of TLR3/4-mediated signaling. USP19 deficiency increases the production of type I interferons (IFN) and proinflammatory cytokines induced by poly(I:C) or LPS in vitro and in vivo. Usp19-/- mice have more serious inflammation after poly(I:C) or LPS treatment, and are more susceptible to inflammatory damages and death following Salmonella typhimurium infection. Mechanistically, USP19 interacts with TRIF and catalyzes the removal of TRIF K27-linked polyubiquitin moieties, thereby impairing the recruitment of TRIF to TLR3/4. In addition, the RING E3 ubiquitin ligase complex Cullin-3-Rbx1-KCTD10 catalyzes K27-linked polyubiquitination of TRIF at K523, and deficiency of this complex inhibits TLR3/4-mediated innate immune signaling. Our findings thus reveal TRIF K27-linked polyubiquitination and deubiquitination as a critical regulatory mechanism of TLR3/4-mediated innate immune responses.


2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Masahiro Yamamoto ◽  
Kiyoshi Takeda

On microbial invasion, the host immediately evokes innate immune responses. Recent studies have demonstrated that Toll-like receptors (TLRs) play crucial roles in innate responses that lead not only to the clearance of pathogens but also to the efficient establishment of acquired immunity by directly detecting molecules from microbes. In terms of intracellular TLR-mediated signaling pathways, cytoplasmic adaptor molecules containing Toll/IL-1R (TIR) domains play important roles in inflammatory immune responses through the production of proinflammatory cytokines, nitric oxide, and type I interferon, and upregulation of costimulatory molecules. In this paper, we will describe our current understanding of the relationship between TLRs and their ligands derived from pathogens such as viruses, bacteria, fungi, and parasites. Moreover, we will review the historical and current literature to describe the mechanisms behind TLR-mediated activation of innate immune responses.


2016 ◽  
Vol 90 (9) ◽  
pp. 4262-4268 ◽  
Author(s):  
Jun Zhao ◽  
Junhua Li ◽  
Simin Xu ◽  
Pinghui Feng

Protein deamidation has been considered a nonenzymatic process associated with protein functional decay or “aging.” Recent studies implicate protein deamidation in regulating signal transduction in fundamental biological processes, such as innate immune responses. Work investigating gammaherpesviruses and bacterial pathogens indicates that microbial pathogens deploy deamidases or enzyme-deficient homologues (pseudoenzymes) to induce deamidation of key signaling components and evade host immune responses. Here, we review studies on protein deamidation in innate immune signaling and present several imminent questions concerning the roles of protein deamidation in infection and immunity.


2021 ◽  
Vol 11 ◽  
Author(s):  
Renjie Chang ◽  
Qing Chu ◽  
Weiwei Zheng ◽  
Lei Zhang ◽  
Tianjun Xu

As is known to all, the production of type I interferon (IFN) plays pivotal roles in host innate antiviral immunity, and its moderate production play a positive role in promoting the activation of host innate antiviral immune response. However, the virus will establish a persistent infection model by interfering with the production of IFN, thereby evading the organism inherent antiviral immune response. Therefore, it is of great necessity to research the underlying regulatory mechanisms of type I IFN appropriate production under viral invasion. In this study, we report that a Sp1–responsive miR-15b plays a negative role in siniperca chuatsi rhabdovirus (SCRV)-triggered antiviral response in teleost fish. We found that SCRV could dramatically upregulate miiuy croaker miR-15b expression. Enhanced miR-15b could negatively regulate SCRV-triggered antiviral genes and inflammatory cytokines production by targeting TANK-binding kinase 1 (TBK1), thereby accelerating viral replication. Importantly, we found that miR-15b feedback regulates antiviral innate immune response through NF-κB and IRF3 signaling pathways. These findings highlight that miR-15b plays a crucial role in regulating virus–host interactions, which outlines a new regulation mechanism of fish’s innate immune responses.


Author(s):  
Zhou Shen ◽  
Lin Wei ◽  
Zhi-bo Yu ◽  
Zhi-yan Yao ◽  
Jing Cheng ◽  
...  

The Tripartite motif (TRIM) protein family, which contains over 80 members in human sapiens, is the largest subfamily of the RING-type E3 ubiquitin ligase family. It is implicated in regulating various cellular functions, including cell cycle process, autophagy, and immune response. The dysfunction of TRIMs may lead to numerous diseases, such as systemic lupus erythematosus (SLE). Lots of studies in recent years have demonstrated that many TRIM proteins exert antiviral roles. TRIM proteins could affect viral replication by regulating the signaling pathways of antiviral innate immune responses. Besides, TRIM proteins can directly target viral components, which can lead to the degradation or functional inhibition of viral protein through degradative or non-degradative mechanisms and consequently interrupt the viral lifecycle. However, new evidence suggests that some viruses may manipulate TRIM proteins for their replication. Here, we summarize the latest discoveries on the interactions between TRIM protein and virus, especially TRIM proteins’ role in the signaling pathway of antiviral innate immune response and the direct “game” between them.


2019 ◽  
Vol 116 (50) ◽  
pp. 25106-25114 ◽  
Author(s):  
Wenqian Li ◽  
Jun Yan ◽  
Yan Yu

Receptors of innate immune cells function synergistically to detect pathogens and elicit appropriate immune responses. Many receptor pairs also appear “colocalized” on the membranes of phagosomes, the intracellular compartments for pathogen ingestion. However, the nature of the seemingly receptor colocalization and the role it plays in immune regulation are unclear, due to the inaccessibility of intracellular phagocytic receptors. Here, we report a geometric manipulation technique to directly probe the role of phagocytic receptor “colocalization” in innate immune regulation. Using particles with spatially patterned ligands as phagocytic targets, we can decouple the receptor pair, Dectin-1 and Toll-like receptor (TLR)2, to opposite sides on a single phagosome or bring them into nanoscale proximity without changing the overall membrane composition. We show that Dectin-1 enhances immune responses triggered predominantly by TLR2 when their centroid-to-centroid proximity is <500 nm, but this signaling synergy diminishes upon receptor segregation beyond this threshold distance. Our results demonstrate that nanoscale proximity, not necessarily colocalization, between Dectin-1 and TLR2 is required for their synergistic regulation of macrophage immune responses. This study elucidates the relationship between the spatial organization of phagocytic receptors and innate immune responses. It showcases a technique that allows spatial manipulation of receptors and their signal cross-talk on phagosomes inside living cells.


Sign in / Sign up

Export Citation Format

Share Document