scholarly journals Dose-Dependent Outcome of EBV Infection of Humanized Mice Based on Green Raji Unit (GRU) Doses

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2184
Author(s):  
Haiwen Chen ◽  
Ling Zhong ◽  
Wanlin Zhang ◽  
Shanshan Zhang ◽  
Junping Hong ◽  
...  

Humanized mouse models are used as comprehensive small-animal models of EBV infection. Previously, infectious doses of EBV used in vivo have been determined mainly on the basis of TD50 (50% transforming dose), which is a time-consuming process. Here, we determined infectious doses of Akata-EBV-GFP using green Raji units (GRUs), and characterized dose-dependent effects in humanized mice. We defined two outcomes in vivo, including an infection model and a lymphoma model, following inoculation with low or high doses of Akata-EBV-GFP, respectively. Inoculation with a low dose induced primary B cells to become lymphoblastoid cell lines in vitro, and caused latent infection in humanized mice. In contrast, a high dose of Akata-EBV-GFP resulted in primary B cells death in vitro, and fatal B cell lymphomas in vivo. Following infection with high doses, the frequency of CD19+ B cells decreased, whereas the percentage of CD8+ T cells increased in peripheral blood and the spleen. At such doses, a small part of activated CD8+ T cells was EBV-specific CD8+ T cells. Thus, GRUs quantitation of Akata-EBV-GFP is an effective way to quantify infectious doses to study pathologies, immune response, and to assess (in vivo) the neutralizing activity of antibodies raised by immunization against EBV.

1987 ◽  
Vol 166 (6) ◽  
pp. 1716-1733 ◽  
Author(s):  
J S Weber ◽  
G Jay ◽  
K Tanaka ◽  
S A Rosenberg

We have shown that two weakly immunogenic MCA sarcomas developed in our laboratory that are sensitive to high-dose IL-2 immunotherapy express class I MHC in vivo and in vitro. Two nonimmunogenic MCA sarcomas are relatively insensitive to IL-2 therapy and express minimal or no class I MHC molecules in vivo and in vitro. To study the role of MHC in the therapy of tumors with IL-2, a class I-deficient murine melanoma, B16BL6, was transfected with the Kb class I gene. Expression of class I MHC rendered B16BL6 advanced pulmonary macrometastases sensitive to IL-2 immunotherapy. 3-d micrometastases of CL8-2, a class I transfected clone of B16BL6, were significantly more sensitive to IL-2 therapy than a control nontransfected line. Expression of Iak, a class II MHC molecule, had no effect on IL-2 therapy of transfectant pulmonary micrometastases in F1 mice. By using lymphocyte subset depletion with mAbs directed against Lyt-2, therapy of class I transfectant macrometastases with high-dose IL-2 was shown to involve an Lyt-2 cell. In contrast, regression of micrometastases treated with low-dose IL-2 involved Lyt-2+ cells, but regression mediated by high doses of IL-2 did not. We hypothesize that both LAK and Lyt-2+ T cells effect IL-2-mediated elimination of micrometastases, but only Lyt-2+ T cells are involved in macrometastatic regression. Low doses of IL-2 stimulate Lyt-2+ cells to eliminate class I-expressing micrometastases, but high doses of IL-2 can recruit LAK cells to mediate regression of micrometastases independent of class I expression. Only high-dose IL-2, mediating its effect predominantly via Lyt-2+ cells, is capable of impacting on MHC class I-expressing macrometastases. Macrometastases devoid of class I MHC antigens appear to be resistant to IL-2 therapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3642-3642 ◽  
Author(s):  
Purvi Gada ◽  
Michelle Gleason ◽  
Valarie McCullar ◽  
Philip B. McGlave ◽  
Jeffrey S. Miller

Abstract Allogeneic NK cells may play a therapeutic role in treating patients with AML. We have previously shown that high dose cyclophosphamide (120 mg/kg × 1 day) and fludarabine (125 mg/m2 × 5 days) can clear lymphoid space and induce a surge of endogenous IL-15 to expand haploidentical NK cells obtained from CD3-depleted lymphapheresis products from adult donors. In this initial study, 5 of 19 patients achieved remissions and in vivo NK cell expansion. Limitations of this therapy includeinability of NK cells to expand in most patients,development of PTLD (in one patient) andinadequate disease control.We hypothesized that contaminating T cells could compete for NK cell expansion, that B-cells may contribute to PTLD, and that a 2-step NK cell purification method using CD3 depletion followed by CD56 selection (CliniMacs) may overcome these problems. We tested this in 9 patients with advanced AML. The purified NK cells, activated with 1000 U/ml IL-2 (16–20 hours), were infused 48 hours after the last fludarabine dose. Patients then received subcutaneous IL-2 (10 MU) every other day × 6 doses to expand NK cells in vivo. None of the 9 pts treated on this protocol achieved remission or exhibited evidence of in vivo expansion. Several studies were designed to investigate this unexpected result. First, we found that the more extensive processing resulted in approximately 1/3 the NK cell recovery compared to CD3 depletion alone (38±% viable NK cells vs. 91±2% respectively). In addition, we questioned whether the contaminating B cells and monocytes that were removed in the 2-step depletion strategy had served a critical role in NK cell activation or expansion. Cytotoxicity assays performed against K562 targets showed that the killing was about 3-fold higher with the purified (CD3-CD56+) product compared the CD3-depleted product alone (P=0.001 at E:T of 6.6:1). Proliferation, measured by a 6-day thymidine assay, was higher in proportion to the higher NK cell content. The only difference between the two NK products was their expansion after 14 days of culture, where the CD3-depleted product, with contaminating B-cells and monocytes, gave rise to greater NK cell expansion (14 ±3-fold) compared to the 2-step purified product (4.5±0.9, n=6, P=0.005). If this finding holds true in vivo, the co-infusion of accessory cells may be required for NK cell expansion. We next developed in vitro assays using very low concentrations (0.5 ng/ml) of IL-2 and IL-15 to understand their role in expansion. IL-2 or IL-15 alone induced low proliferation and the combination was synergistic. Lastly, UCB, a rich source of NK cell precursors, was compared to adult NK cells. In a short term proliferation assay, CD56+ NK cells stimulated with IL-2 + IL-15 expanded better from adult donors (61274±12999, n=6) than from UCB (20827± 6959, n=5, P=0.026) but there was no difference after 14 days in expansion culture suggesting that the only difference is in kinetics. However, UCB depleted of T-cells (enriching for NK cell precursors) exhibited higher fold expansion over 14 days under different culture conditions conducive to NK cell progenitors. In conclusion, NK cell expansion in vitro depends on cell source, IL-2 and IL-15 (increased in vivo after lymphoid depleting chemotherapy) as well as accessory cells. The role of these factors to enhance in vivo expansion is under clinical investigation to further exploit the NK cell alloreactivity against AML targets.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Daniel Santos ◽  
Francisco Gonzalez-Perez ◽  
Xavier Navarro ◽  
Jaume del Valle

Although peripheral axons can regenerate after nerve transection and repair, functional recovery is usually poor due to inaccurate reinnervation. Neurotrophic factors promote directional guidance to regenerating axons and their selective application may help to improve functional recovery. Hence, we have characterized in organotypic cultures of spinal cord and dorsal root ganglia the effect of GDNF, FGF-2, NGF, NT-3, and BDNF at different concentrations on motor and sensory neurite outgrowth. In vitro results show that GDNF and FGF-2 enhanced both motor and sensory neurite outgrowth, NGF and NT-3 were the most selective to enhance sensory neurite outgrowth, and high doses of BDNF selectively enhanced motor neurite outgrowth. Then, NGF, NT-3, and BDNF (as the most selective factors) were delivered in a collagen matrix within a silicone tube to repair the severed sciatic nerve of rats. Quantification of Fluorogold retrolabeled neurons showed that NGF and NT-3 did not show preferential effect on sensory regeneration whereas BDNF preferentially promoted motor axons regeneration. Therefore, the selective effects of NGF and NT-3 shown in vitro are lost when they are applied in vivo, but a high dose of BDNF is able to selectively enhance motor neuron regeneration both in vitro and in vivo.


1998 ◽  
Vol 188 (11) ◽  
pp. 1977-1983 ◽  
Author(s):  
Sally R.M. Bennett ◽  
Francis R. Carbone ◽  
Tracey Toy ◽  
Jacques F.A.P. Miller ◽  
William R. Heath

This report investigates the response of CD8+ T cells to antigens presented by B cells. When C57BL/6 mice were injected with syngeneic B cells coated with the Kb-restricted ovalbumin (OVA) determinant OVA257–264, OVA-specific cytotoxic T lymphocyte (CTL) tolerance was observed. To investigate the mechanism of tolerance induction, in vitro–activated CD8+ T cells from the Kb-restricted, OVA-specific T cell receptor transgenic line OT-I (OT-I cells) were cultured for 15 h with antigen-bearing B cells, and their survival was determined. Antigen recognition led to the killing of the B cells and, surprisingly, to the death of a large proportion of the OT-I CTLs. T cell death involved Fas (CD95), since OT-I cells deficient in CD95 molecules showed preferential survival after recognition of antigen on B cells. To investigate the tolerance mechanism in vivo, naive OT-I T cells were adoptively transferred into normal mice, and these mice were coinjected with antigen-bearing B cells. In this case, OT-I cells proliferated transiently and were then lost from the secondary lymphoid compartment. These data provide the first demonstration that B cells can directly tolerize CD8+ T cells, and suggest that this occurs via CD95-mediated, activation-induced deletion.


2018 ◽  
Vol 2 (18) ◽  
pp. 2332-2340 ◽  
Author(s):  
Kalpana Parvathaneni ◽  
David W. Scott

Abstract Hemophilia A is an X-linked bleeding disorder caused by mutations in the factor VIII (FVIII) gene (F8). Treatment with recombinant or plasma-derived FVIII replacement therapy is standard therapy. A major problem in treating hemophilia A patients with therapeutic FVIII is that 20% to 30% of these patients produce neutralizing anti-FVIII antibodies (inhibitors) because they are not immunologically tolerant to this human protein. Hence, there is a need to establish tolerogenic protocols to FVIII epitopes. To specifically target FVIII-specific B cells, we engineered immunodominant FVIII domains (A2 and C2) as a chimeric antigen receptor expressed by both human and murine cytotoxic T cells. This FVIII domain engineered B-cell antibody receptor (BAR) that expresses T cells was capable of killing FVIII-reactive B-cell hybridomas in vitro and in vivo. Moreover, FVIII BAR CD8 T cells blocked the development of specific antibody from unimmunized spleen cells stimulated polyclonally with lipopolysaccharide in vitro. In addition, adoptive transfer of FVIII A2- and C2-BAR CD8 T cells significantly reduced the anti-FVIII antibody formation in hemophilic mice. These data suggest that BAR-engineered T cells are a promising approach for future prophylactic treatment for patients with severe hemophilia A who are at high risk of developing inhibitors.


2020 ◽  
Author(s):  
SUTHAN PERMUAL ◽  
GAUTHAM KOLLURI ◽  
JAG MOHAN ◽  
RAM SINGH ◽  
JAGBIR TYAGI

Abstract Bisphenol-A, is one of the most characterized endocrine disruptors on the reproductive functions in humans and animals. We have previously reported in vitro and in vivo effects of bisphenol-A on functional role of sperm in chicken. Here, the effects of 1 and 5 mg/kg bisphenol-A daily administered by gavage for 3 wk to adult male Japanese quails on reproductive functionality was investigated. Cloacal index and foam frequency were greatly reduced at high dose. Sperm quality attributes were affected at both doses. Sperm quality attributes were affected at both doses. Alkaline phosphatase showed most significant reduction among seminal enzymes. Dose dependent response (P < 0.01) of bisphenol-A was noticed with modulating testosterone concentrations at low and high doses. Disturbances regarding fertility and hatchability traits were prominent in high and low dose groups. The current study confirms the compromising actions of bisphenol-A on reproductive success in male Japanese quails at lower doses that are considered to be safe (50 mg/kg BW/d) under in vivo exposure module. These results indicate higher sensitivity of quails to bisphenol-A toxicity and explores the possibility of using quail subjects as an accurate toxic indicators.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 681 ◽  
Author(s):  
Renuka V. Iyer ◽  
Orla Maguire ◽  
Minhyung Kim ◽  
Leslie I. Curtin ◽  
Sandra Sexton ◽  
...  

The multikinase inhibitor sorafenib is the only standard first-line therapy for hepatocellular carcinoma (HCC). Here, we report the dose-dependent effects of sorafenib on the immune response, which is related to nuclear factor of activated T cells 1 (NFAT1) activity. In vitro and in vivo experiments were performed with low and high doses of sorafenib using human T cells and spontaneous developed woodchuck HCC models. In vitro studies demonstrated that following exposure to a high dose of sorafenib the baseline activity of NFAT1 in T cells was significantly increased. In a parallel event, high dose sorafenib resulted in a significant decrease in T cell proliferation and increased the proportion of PD-1 expressing CD8+ T cells with NFAT1 activation. In the in vivo model, smaller tumors were detected in the low-dose sorafenib treated group compared to the placebo and high-dose treated groups. The low-dose sorafenib group showed a significant tumor growth delay with significantly more CD3+ cells in tumor. This study demonstrates that sorafenib has immunomodulatory effects in a dose- and time-dependent manner. Higher dose of sorafenib treatment was associated with immunosuppressive action. This observed effect of sorafenib should be taken into consideration in the selection of optimum starting dose for future trials.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2330-2330
Author(s):  
Constantijn J.M. Halkes ◽  
Inge Jedema ◽  
Judith Olde Wolbers ◽  
Esther M van Egmond ◽  
Peter A. Von Dem Borne ◽  
...  

Abstract Abstract 2330 In vivo T cell depletion with anti-thymocyte globulin (ATG) or alemtuzumab (anti-CD52) before reduced intensity allogeneic stem cell transplantation (alloSCT) in combination with in vitro T cell depletion with alemtuzumab reduces the risk of GVHD. Detectable levels of circulating antibodies are present up to several months after the alloSCT, leading to a delayed immune reconstitution which is associated with an increased incidence of opportunistic infections and early relapses. Prior to 2007, combined in vitro (Alemtuzumab 20 mg added “to the bag”) and in vivo T cell depletion with horse-derived ATG (h-ATG) resulted in good engraftment without GVHD in the absence of GVHD prophylaxis after reduced intensity alloSCT using conditioning with fludarabine and busulphan. Due to the unavailability of h-ATG, rabbit-derived ATG (r-ATG) 10–14 mg/kg was introduced in the conditioning regimen in 2007. Strikingly, in this cohort of patients, early EBV reactivation and EBV-associated post-transplantation lymphoproliferative disease (PTLD) was observed in 10 out of 18 patients at a median time of 6 weeks after alloSCT (range 5 to 11 weeks) in the absence of GVHD or immunosuppressive treatment. Analysis of T and B cell recovery early after transplantation revealed preferential depletion of T cells as compared to B cells, thereby allowing unrestricted proliferation of EBV infected B cells. Due to this unacceptable high incidence of EBV-related complications, in the conditioning regimen r-ATG was replaced by low dose alemtuzumab (15 mg i.v. day -4 and -3) in 2008. In this cohort of 60 patients, only 2 patients experienced transient EBV reactivation during the first 3 months after alloSCT and one patient developed an EBV-associated lymphoma 4 weeks after alloSCT. To investigate the mechanisms underlying the low incidence of EBV reactivation using alemtuzumab for T cell depletion, we studied the in vivo and in vitro effects of alemtuzumab on different lymphocyte subsets. First, lineage-specific reconstitution was studied in 20 patients from the alemtuzumab cohort with known CD52 negative diseases (11 AML and 9 multiple myeloma) to exclude the confounding effect of antibody absorption by malignant cells. Whereas at 3 weeks after alloSCT detectable numbers of circulating NK cells and T cells were observed (medians 71 (range 6–378), and 12 (range 1–1164)E6/L, respectively), no circulating B cells could be detected (median 0, range 0–1 E6/L). At 6 weeks after alloSCT, NK and T cell numbers further increased (medians 212 (52-813), and 130 (range 25–1509)E6/L, respectively), whereas B cell numbers still remained low in the majority of patients (median 15, range 0–813E6/L). In all patients, T cells were detectable before the appearance of circulating B cells. Furthermore, the expression of CD52 and the sensitivity to alemtuzumab-mediated complement-dependent cell lysis (CDC) of B cells, T cells and NK cells was measured in vitro. The highest CD52 expression was observed on B cells (mean fluorescence intensity (MFI) 120), resulting in 95% lysis after incubation with 10ug/mL alemtuzumab and rabbit complement. NK cells showed a significantly lower CD52 expression (MFI 41), which was also reflected by a lower susceptibility to alemtuzumab-mediated CDC (62% lysis). Interestingly, differential expression of CD52 was observed on CD4 and CD8 T cells (MFI 120 and 101, respectively). Cytotoxicity analysis revealed relative protection of CD8 compared to CD4 T cells against alemtuzumab-mediated CDC, resulting in 52% and 90% lysis, respectively. Based on these results, we investigated in detail the presence and phenotype of the CD4 and CD8 subsets and EBV-specific CD8 T cells using tetramer staining at 6 weeks after alloSCT. In accordance with the in-vitro expression and susceptibility data, circulating CD52+ CD8 T cells including EBV-specific T cells were detectable. Interestingly, the majority of circulating CD4 T cells (64-93%, n=4) lacked CD52 expression, explaining their capacity to persist in the presence of alemtuzumab. We conclude that in vivo and in vitro T cell depletion with alemtuzumab is associated with a relatively low risk of EBV-associated PTLD because of efficient B cell depletion and persistent EBV immunity allowed by the relative insusceptibility for alemtuzumab of CD8 T cells and the development of CD52 negative escape variants of CD4 T cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1979-1979 ◽  
Author(s):  
C.J.M. Halkes ◽  
J.H.F. Falkenburg ◽  
H.M. van Egmond ◽  
J. Olde Wolbers ◽  
C.W.J. Starrenburg ◽  
...  

Abstract Abstract 1979 Control of replication of endogenous viruses like CMV and EBV is fully dependent on CMV or EBV specific T cells after allogeneic stem cell transplantation (alloSCT). In the absence of specific CD8 T cell control, proliferation of EBV infected B cells can lead to post transplantation lymphoproliferative disease (PTLD). In an initial cohort of patients treated with horse derived anti thymocyte globulin (h-ATG), no early PTLD was observed. However, due to unavailability in Europe, h-ATG had to be replaced by rabbit derived ATG (r-ATG), leading to an unacceptable high incidence of EBV-PTLD (26% during first 3 months after alloSCT). Replacement of r-ATG by alemtuzumab (ALT) significantly reduced the incidence of EBV-PTLD (3 months incidence of EBV-PTLD 2%). To determine the immunological basis of these findings we performed a detailed analysis of immune reconstitution in these three cohorts of transplanted patients. The first cohort (41 patients) received h-ATG (Lymphoglobulin) 10 mg/kg/day for 4 days. The second cohort (19 patients) received r-ATG (Thymoglobulin) 2.0 or 3.5 mg/kg/day for 4 days and the third cohort (60 patients) received ALT, 15 mg/day for 2 days. All grafts consisted of PBSC to which 20 mg of ALT was added for in vitro T cell depletion. All patients received a fludarabin and busulphan based conditioning regimen. No standard post transplantation immunosuppressive treatment was given. In the r-ATG cohort, early EBV-PTLD occurred after a median of 7 weeks (range 4–12 weeks) post alloSCT. Three r-ATG treated patients died while high levels of circulating EBV-DNA were present (> log 4.0 copies/mL). Incidence of CMV disease was not significantly different in the three cohorts (5%, 6% and 0%, respectively). In contrast to the other 2 cohorts, immune reconstitution in the r-ATG cohort was characterized by an imbalance between recovery of B cells and CD8 T cells. Already 3 weeks after alloSCT, the majority (67%) of r-ATG patients showed a more rapid reconstitution of B cells than CD8 T cells, leading to B cells outnumbering CD8 T cells. This was seen in only a small minority of patients after h-ATG and ALT (17% and 6%, respectively, p<0.01 versus r-ATG). Because rapid recovery of T cells in the alemtuzumab patients was frequently found in the presence of circulating ALT (mean concentration 0.43 μg/mL and 0.12 μg/mL after 3 and 6 weeks, respectively), the phenotype of circulating CD4 and CD8 T cells at 6 weeks after ALT was analyzed. The majority of circulating CD8 and CD4 T cells lacked CD52 expression (56% (range 0–99%) and 81% (range 0–93%), respectively). Using tetramer staining, cytotoxicity assays and analysis of cytokine production, we demonstrated the presence of functional CD52 negative as well as CD52 positive CMV and EBV specific CD8 T cells. Based on FLAER negativity, it was demonstrated that the CD52 negative T cells are GPI anchor deficient, representing a PNH-like clone escaping ALT induced cell lysis. Because almost half of the circulating CD8 T cells were CD52 positive, we examined expression of CD52 and the in-vitro sensitivity to ALT-mediated complement-dependent cell lysis (CDC) of B cells, CD4 and CD8 T cells of healthy donors. The highest CD52 expression was observed on B cells (mean fluorescence intensity (MFI) 120), resulting in 95% lysis after incubation with ALT and complement. Differential expression of CD52 was observed on CD4 and CD8 T cells, MFI 120 and 101 respectively, resulting in relative protection of CD52 positive CD8 compared to CD4 T cells against ALT-mediated CDC (52% and 90% lysis). We conclude that the high incidence of EBV-PTLD after in-vivo T cell depletion with r-ATG is caused by an induced imbalance between B and T cell recovery, which is not seen after h-ATG or ALT. In-vivo T cell depletion with ALT is associated with a relatively low risk of EBV disease because of efficient B cell depletion and persistent EBV immunity due to the relative insusceptibility for ALT of CD8 T cells and the development of functional CD52 negative escape variants of CD4 and CD8 T cells. Disclosures: Off Label Use: Alemtuzumab and Anti Thymocyte Globulin used for in vivo T cell depletion prior to allogeneic stem cell transplantation.


1991 ◽  
Vol 174 (6) ◽  
pp. 1653-1656 ◽  
Author(s):  
G H Sunshine ◽  
B L Jimmo ◽  
C Ianelli ◽  
L Jarvis

We have examined the requirements for activating unprimed T cells in vivo by transferring T cells into scid mice, which lack mature B and T cells. Purified adult thymocytes and a protein antigen, keyhole limpet hemocyanin (KLH), were injected into scid mice. scid mice injected with T cells and KLH developed cellular lymph nodes containing CD4+ and CD8+ T cells. Cells recovered from the lymph nodes of injected scid mice proliferated and secreted interleukin 2 in response to KLH in vitro. The results indicate that T cells can be primed to KLH in the scid mouse in the absence of B cells.


Sign in / Sign up

Export Citation Format

Share Document