scholarly journals Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2246
Author(s):  
Jiří Beran ◽  
Marián Špajdel ◽  
Jiří Slíva

Since its licensing in 1971, the synthetic compound inosine pranobex has been effectively combating viral infections, including herpes zoster, varicella, measles, and infections caused by the herpes simplex virus, human papillomavirus, Epstein–Barr virus, cytomegalovirus, and respiratory viruses. With the emergence of SARS-CoV-2, new and existing drugs have been intensively evaluated for their potential as COVID-19 medication. Due to its potent immunomodulatory properties, inosine pranobex, an orally administered drug with pleiotropic effects, can, during early treatment, alter the course of the disease. We describe the action of inosine pranobex in the body and give an overview of existing evidence collected to support further efforts to study this drug in a rigorous clinical trial setup.

2012 ◽  
Vol 4 (1) ◽  
pp. 38-42 ◽  
Author(s):  
Daniela Lydia Krause ◽  
Elif Weidinger ◽  
Judith Matz ◽  
Agnes Wildenauer ◽  
Jenny Katharina Wagner ◽  
...  

There are several infectious agents in the environment that can cause persistent infections in the host. They usually cause their symptoms shortly after first infection and later persist as silent viruses and bacteria within the body. However, these chronic infections may play an important role in the pathogenesis of schizophrenia and Tourette's syndrome (TS). We investigated the distribution of different neurotrophic infectious agents in TS, schizophrenia and controls. A total of 93 individuals were included (schizophrenic patients, Tourette patients and controls). We evaluated antibodies against cytomegalovirus (CMV), herpes-simplex virus (HSV), Epstein-Barr virus, Toxoplasma, Mycoplasma and Chlamydia trachomatis/pneumoniae. By comparing schizophrenia and TS, we found a higher prevalence of HSV (P=0.017) and CMV (P=0.017) antibodies in schizophrenic patients. Considering the relationship between schizophrenia, TS and healthy controls, we showed that there are associations for Chlamydia trachomatis (P=0.007), HSV (P=0.027) and CMV (P=0.029). When all measured viruses, bacteria and protozoa were combined, schizophrenic patients had a higher rate of antibodies to infectious agents than TS patients (P=0.049). Tourette and schizophrenic patients show a different vulnerability to infectious agents. Schizophrenic patients were found to have a higher susceptibility to viral infections than individuals with TS. This finding might point to a modification in special immune parameters in these diseases.


2016 ◽  
Vol 90 (11) ◽  
pp. 5353-5367 ◽  
Author(s):  
Jayaraju Dheekollu ◽  
Andreas Wiedmer ◽  
Daniel Sentana-Lledo ◽  
Joel Cassel ◽  
Troy Messick ◽  
...  

ABSTRACTEpstein-Barr virus (EBV) establishes latent infections as multicopy episomes with complex patterns of viral gene transcription and chromatin structure. The EBV origin of plasmid replication (OriP) has been implicated as a critical control element for viral transcription, as well as viral DNA replication and episome maintenance. Here, we examine cellular factors that bind OriP and regulate histone modification, transcription regulation, and episome maintenance. We found that OriP is enriched for histone H3 lysine 4 (H3K4) methylation in multiple cell types and latency types. Host cell factor 1 (HCF1), a component of the mixed-lineage leukemia (MLL) histone methyltransferase complex, and transcription factor OCT2 (octamer-binding transcription factor 2) bound cooperatively with EBNA1 (Epstein-Barr virus nuclear antigen 1) at OriP. Depletion of OCT2 or HCF1 deregulated latency transcription and histone modifications at OriP, as well as the OriP-regulated latency type-dependent C promoter (Cp) and Q promoter (Qp). HCF1 depletion led to a loss of histone H3K4me3 (trimethylation of histone H3 at lysine 4) and H3 acetylation at Cp in type III latency and Qp in type I latency, as well as an increase in heterochromatic H3K9me3 at these sites. HCF1 depletion resulted in the loss of EBV episomes from Burkitt's lymphoma cells with type I latency and reactivation from lymphoblastoid cells (LCLs) with type III latency. These findings indicate that HCF1 and OCT2 function at OriP to regulate viral transcription, histone modifications, and episome maintenance. As HCF1 is best known for its function in herpes simplex virus 1 (HSV-1) immediate early gene transcription, our findings suggest that EBV latency transcription shares unexpected features with HSV gene regulation.IMPORTANCEEBV latency is associated with several human cancers. Viral latent cycle gene expression is regulated by the epigenetic control of the OriP enhancer region. Here, we show that cellular factors OCT2 and HCF1 bind OriP in association with EBNA1 to maintain elevated histone H3K4me3 and transcriptional enhancer function. HCF1 is known as a transcriptional coactivator of herpes simplex virus (HSV) immediate early (IE) transcription, suggesting that OriP enhancer shares aspects of HSV IE transcription control.


PEDIATRICS ◽  
1996 ◽  
Vol 97 (6) ◽  
pp. 949-954
Author(s):  
Alan L. Bisno

Acute pharyngitis may be caused by a wide variety of microbial agents (Table 1). The relative importance of each of these agents varies greatly depending on a number of epidemiologic factors, including age of the patient, season of the year, and geographic locale. Viruses Most cases of acute pharyngitis are viral in etiology and involve the pharynx as well as other portions of the respiratory tract as manifestations of the common cold, influenza, or croup. Examples include the rhinoviruses, coronaviruses, influenza A and B, and the parainfluenza viruses. Certain viral infections causing sore throat may exhibit clinical manifestations that are rather distinctive. Examples include enteroviruses (herpangina due to Coxsackie A), Epstein-Barr virus (infectious mononucleosis), cytomegalovirus (cytomegalovirus mononucleosis), adenovirus (pharyngoconjunctival fever, acute respiratory disease of military recruits), and herpes simplex virus (pharyngitis, gingivitis, and stomatitis). In many instances, however, the illnesses caused by these agents may overlap so broadly with that of streptococcal pharyngitis as to be clinically indistinguishable. Thus, Epstein-Barr virus, adenovirus, and herpes virus may all cause fever, exudative pharyngitis, and cervical adenitis. Several studies have documented the role of primary herpesvirus type 1 infection as a cause of acute pharyngitis in college students.1-4 Herpesvirus type 2 can occasionally cause a similar illness as a consequence of oral-genital sexual contact.5 Although herpesvirus infections may involve the anterior oral cavity (vesicular or ulcerative gingivostomatitis) as well as the posterior pharynx, they do not routinely do so. Only about one-fourth of students with culturally and serologically proven primary herpes simplex type 1 pharyngitis studied by Glezen et al,2 for example, had gingivostomatitis.


2021 ◽  
Author(s):  
Neeraj Sharma ◽  
Rajat Shukla ◽  
Rachna Warrier ◽  
Kunal Kumar ◽  
Nalin Singh ◽  
...  

Abstract Pancytopenia is a condition when person has low count of all three types of blood cells causing a triage of anemia, leukopenia and thrombocytopenia. It should not be considered as a disease in itself but rather the sign of a disease that needs to be further evaluated. Among the various causes, viral infections like Human Immunodeficiency Virus, Cytomegalovirus, Epstein-Barr virus and Parvovirus B19 have been implicated. Pancytopenia is a rare complication and not commonly seen in patients with COVID 19 disease. Here, we report a case of pancytopenia in previously immunocompetent elderly male patient with SARS-CoV2 infection.


2012 ◽  
pp. 305-311 ◽  
Author(s):  
María Lilia Diaz Betancourth ◽  
Julio Cesar Klinger ◽  
Victoria Eugenia Niño

Lymphocytopenia and CD4+ T lymphocytopenia can be associated with many bacterial, fungal, parasite and viral infections. They can also be found in autoimmune and neoplastic diseases, common variable immu­nodeficiency syndrome, physical, psychological and traumatic stress, malnutrition and immunosuppressive therapy. Besides, they can also be brought into relation, without a known cause, with idiopathic CD4+ T lym­phocytopenia. Among viral infections, the Retrovirus, specially the human immunodeficiency virus, is the most frequently cause. However, many acute viral infections, including cytomegalovirus and Epstein Barr virus can be associated with transient lymphocytopenia and CD4+ T lymphocytopenia. As is well known, transient lymphocytopenia and CD4+ T lymphocytopenia are temporary and overcome when the disease improves. Nonetheless, severe CD4+ T Lymphocytopenia associated with chronic infections by human herpes virus has not been reported. We describe 6 cases of human immunodeficiency virus negative patients, with chronic cytomegalovirus and Epstein Barr virus infections and profound lymphocytopenia with clinical symptoms of cellular immunodeficiency. These patients improved rapidly with ganciclovir or valganciclovir treatment. We claim here that it is important to consider the chronic human herpes virus infection in the differential diag­nosis of profoundly CD4+ T lymphocytopenia etiology, when human immunodeficiency virus is absent, in order to start effective treatment and to determine, in future studies, the impact of chronic human herpes virus infection in human beings’ health.


Author(s):  
Randall C. Walker

The following types of viral infections are discussed in this chapter: viral infections that have the capacity for multiorgan or systemic disease; infections that affect adults who may be otherwise healthy or at least not in special populations such as herpes simplex virus (HSV) type 1, varicella-zoster virus (VZV), Epstein-Barr virus, adenovirus, mumps virus, human parvovirus B19, and coxsackievirus. Reviews of these viruses focus on differentiating clinical features, diagnostic tools and treatment, and salient microbiologic and epidemiologic factors.


Author(s):  
Peter G. E. Kennedy

Abstract Several viruses have the capacity to cause serious infections of the nervous system in patients who are immunosuppressed. Individuals may be immunosuppressed because of primary inherited immunodeficiency, secondary immunodeficiency due to particular diseases such as malignancy, administration of immunosuppressant drugs or organ or bone marrow transplantation. The viruses capable of such opportunistic infection of the nervous system include herpes simplex virus (HSV), Varicella-Zoster virus (VZV), Cytomegalovirus (CMV), Epstein –Barr virus (EBV), Human Herpes virus type 6 (HHV-6), JC virus (JCV), enterovirus, measles virus and Covid-19. In most cases it seems likely that immunological defence mechanisms in the immunosuppressed are deficient which creates a suitable environment for certain viruses to become opportunistic in the nervous and other systems. Further research is required both to understand these opportunistic mechanisms in more detail and also to determine how many virus infections are modified by specific inborn errors of immunological responses.


Sign in / Sign up

Export Citation Format

Share Document