scholarly journals Vaccine Breakthrough Infections by SARS-CoV-2 Variants after ChAdOx1 nCoV-19 Vaccination in Healthcare Workers

Vaccines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Pratibha Kale ◽  
Ekta Gupta ◽  
Chhagan Bihari ◽  
Niharika Patel ◽  
Sheetalnath Rooge ◽  
...  

This study elucidated the clinical, humoral immune response and genomic analysis of vaccine breakthrough (VBT) infections after ChAdOx1 nCoV-19/Covishield vaccine in healthcare workers (HCWs). Amongst 1858 HCWs, 1639 had received either two doses (1346) or a single dose (293) of ChAdOx1 nCoV-19 vaccine. SARS-CoV-2 IgG antibodies and neutralizing antibodies were measured in the vaccinated group and the development of SARS-CoV-2 infection was monitored.Forty-six RT-PCR positive samples from the 203 positive samples were subjected to whole genome sequencing (WGS). Of the 203 (10.92%) infected HCWs, 21.46% (47/219) were non-vaccinated, which was significantly more than 9.52% (156/1639) who were vaccinated and infection was higher in doctors and nurses. Unvaccinated HCWs had 1.57 times higher risk compared to partially vaccinated HCWs and 2.49 times higher risk than those who were fully vaccinated.The partially vaccinated were at higher risk than the fully vaccinated (RR 1.58). Antibody non-response was seen in 3.44% (4/116), low antibody levels in 15.51% (18/116) and medium levels were found in 81.03% (94/116). Fully vaccinated HCWs had a higher antibody response at day 42 than those who were partially vaccinated (8.96 + 4.00 vs. 7.17 + 3.82). Whole genome sequencing of 46 samples revealed that the Delta variant (B.1.617.2) was predominant (69.5%). HCWs who had received two doses of vaccine showed better protection from mild, moderate, or severe infection, with a higher humoral immune response than those who had received a single dose. The genomic analysis revealed the predominance of the Delta variant (B.1.617.2) in the VBT infections.

2021 ◽  
Author(s):  
Pratibha Kale ◽  
Ekta Gupta ◽  
Chhagan Bihari ◽  
Niharika Patel ◽  
Sheetalnath Rooge ◽  
...  

Background: India saw a massive surge and emergence of SARS CoV2 variants. We elucidated clinical and humoral immune response and genomic analysis of vaccine breakthrough (VBT) infections after ChAdOx1 nCoV-19 vaccine in healthcare workers (HCWs). Methods: The study was conducted on 1858 HCWs receiving two doses of ChAdOx1 nCoV- 19 vaccine. Serial blood samples were collected to measure SARS CoV2 IgG and neutralizing antibodies. 46 RT-PCR positive samples from VBT infections were subjected to whole genome sequencing (WGS). Results: Infection was confirmed in 219 (11.79%) HCWs of which 21.46% (47/219) were non-vaccinated, significantly more (p <0.001) than 9.52% (156/1639) vaccinated group. VBT infections were significantly higher in doctors and nurses compared to other hospital staff (p <0.001). Unvaccinated individuals had 1.57 times higher risk of infection compared to partially vaccinated (p 0.02) and 2.49 times than fully vaccinated (<0.001). Partially vaccinated were at higher risk of infection than fully vaccinated (RR 1.58,p 0.01). There were 3 (1.36%) severe cases and 1 death in unvaccinated group compared to none in the vaccinated. Non-response after 14 days of second dose was seen in 6.5% (3/46) and low antibody levels (1-4.62 S/CO) in 8.69% (4/46). Delta variant (B.1.617.2) was dominant (69.5%) and reinfection was documented in 4 (0.06%) HCWs. Conclusions: Nearly one in ten vaccinated HCWs can get infected, more so with only single dose (13.65%) than two doses (8.62%). Fully vaccinated are better protected with higher humoral immune response. Genomic analysis revealed an alarming rise of Delta variant (B.1.617.2) in VBT infections.


2021 ◽  
Vol 9 ◽  
Author(s):  
Huaimin Yi ◽  
Jin Wang ◽  
Jiong Wang ◽  
Yuying Lu ◽  
Yali Zhang ◽  
...  

Since severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) began to spread in late 2019, laboratories around the world have widely used whole genome sequencing (WGS) to continuously monitor the changes in the viral genes and discovered multiple subtypes or branches evolved from SARS-CoV-2. Recently, several novel SARS-CoV-2 variants have been found to be more transmissible. They may affect the immune response caused by vaccines and natural infections and reduce the sensitivity to neutralizing antibodies. We analyze the distribution characteristics of prevalent SARS-CoV-2 variants and the frequency of mutant sites based on the data available from GISAID and PANGO by R 4.0.2 and ArcGIS 10.2. Our analysis suggests that B.1.1.7, B.1.351, and P.1 are more easily spreading than other variants, and the key mutations of S protein, including N501Y, E484K, and K417N/T, have high mutant frequencies, which may have become the main genotypes for the spread of SARS-CoV-2.


2009 ◽  
Vol 83 (7) ◽  
pp. 3228-3237 ◽  
Author(s):  
François-Loic Cosset ◽  
Philippe Marianneau ◽  
Geraldine Verney ◽  
Fabrice Gallais ◽  
Noel Tordo ◽  
...  

ABSTRACT The cell entry and humoral immune response of the human pathogen Lassa virus (LV), a biosafety level 4 (BSL4) Old World arenavirus, are not well characterized. LV pseudoparticles (LVpp) are a surrogate model system that has been used to decipher factors and routes involved in LV cell entry under BSL2 conditions. Here, we describe LVpp, which are highly infectious, with titers approaching those obtained with pseudoparticles displaying G protein of vesicular stomatitis virus and their the use for the characterization of LV cell entry and neutralization. Upon cell attachment, LVpp utilize endocytic vesicles for cell entry as described for many pH-dependent viruses. However, the fusion of the LV glycoproteins is activated at unusually low pH values, with optimal fusion occurring between pH 4.5 and 3, a pH range at which fusion characteristics of viral glycoproteins have so far remained largely unexplored. Consistent with a shifted pH optimum for fusion activation, we found wild-type LV and LVpp to display a remarkable resistance to exposure to low pH. Finally, LVpp allow the fast and quantifiable detection of neutralizing antibodies in human and animal sera and will thus facilitate the study of the humoral immune response in LV infections.


2019 ◽  
Author(s):  
James M. Holt ◽  
Camille L. Birch ◽  
Donna M. Brown ◽  
Manavalan Gajapathy ◽  
Nadiya Sosonkina ◽  
...  

AbstractPurposeClinical whole genome sequencing is becoming more common for determining the molecular diagnosis of rare disease. However, standard clinical practice often focuses on small variants such as single nucleotide variants and small insertions/deletions. This leaves a wide range of larger “structural variants” that are not commonly analyzed in patients.MethodsWe developed a pipeline for processing structural variants for patients who received whole genome sequencing through the Undiagnosed Diseases Network (UDN). This pipeline called structural variants, stored them in an internal database, and filtered the variants based on internal frequencies and external annotations. The remaining variants were manually inspected and then interesting findings were reported as research variants to clinical sites in the UDN.ResultsOf 477 analyzed UDN cases, 286 cases (≈ 60%) received at least one structural variant as a research finding. The variants in 16 cases (≈ 4%) are considered “Certain” or “Highly likely” molecularly diagnosed and another 4 cases are currently in review. Of those 20 cases, at least 13 were identified originally through our pipeline with one finding leading to identification of a new disease. As part of this paper, we have also released the collection of variant calls identified in our cohort along with heterozygous and homozygous call counts. This data is available at https://github.com/HudsonAlpha/UDN_SV_export.ConclusionStructural variants are key genetic features that should be analyzed during routine clinical genomic analysis. For our UDN patients, structural variants helped solve ≈ 4% of the total number of cases (≈ 13% of all genome sequencing solves), a success rate we expect to improve with better tools and greater understanding of the human genome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Byoung-Jun Kim ◽  
Hyein Jeong ◽  
Hyejun Seo ◽  
Mi-Hyun Lee ◽  
Hyun Mu Shin ◽  
...  

At present, concerns that the recent global emergence of SARS-CoV-2 variants could compromise the current vaccines have been raised, highlighting the urgent demand for new vaccines capable of eliciting T cell-mediated immune responses, as well as B cell-mediated neutralizing antibody production. In this study, we developed a novel recombinant Mycobacterium paragordonae expressing the SARS-CoV-2 receptor-binding domain (RBD) (rMpg-RBD-7) that is capable of eliciting RBD-specific immune responses in vaccinated mice. The potential use of rMpg-RBD-7 as a vaccine for SARS-CoV-2 infections was evaluated in in vivo using mouse models of two different modules, one for single-dose vaccination and the other for two-dose vaccination. In a single-dose vaccination model, we found that rMpg-RBD-7 versus a heat-killed strain could exert an enhanced cell-mediated immune (CMI) response, as well as a humoral immune response capable of neutralizing the RBD and ACE2 interaction. In a two-dose vaccination model, rMpg-RBD-7 in a two-dose vaccination could also exert a stronger CMI and humoral immune response to neutralize SARS-CoV-2 infections in pseudoviral or live virus infection systems, compared to single dose vaccinations of rMpg-RBD or two-dose RBD protein immunization. In conclusion, our data showed that rMpg-RBD-7 can lead to an enhanced CMI response and humoral immune responses in mice vaccinated with both single- or two-dose vaccination, highlighting its feasibility as a novel vaccine candidate for SARS-CoV-2. To the best of our knowledge, this study is the first in which mycobacteria is used as a delivery system for a SARS-CoV-2 vaccine.


Sign in / Sign up

Export Citation Format

Share Document