scholarly journals Quality Verification with a Cluster−Controlled Manufacturing System to Generate Monocyte−Derived Dendritic Cells

Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 533
Author(s):  
Haruhiko Kawaguchi ◽  
Takuya Sakamoto ◽  
Terutsugu Koya ◽  
Misa Togi ◽  
Ippei Date ◽  
...  

Dendritic cell (DC) vaccines for cancer immunotherapy have been actively developed to improve clinical efficacy. In our previous report, monocyte−derived DCs induced by interleukin (IL)−4 with a low−adherence dish (low−adherent IL-4−DCs: la−IL-4−DCs) improved the yield and viability, as well as relatively prolonged survival in vitro, compared to IL-4−DCs developed using an adherent culture protocol. However, la−IL-4−DCs exhibit remarkable cluster formation and display heterogeneous immature phenotypes. Therefore, cluster formation in la−IL-4−DCs needs to be optimized for the clinical development of DC vaccines. In this study, we examined the effects of cluster control in the generation of mature IL-4−DCs, using cell culture vessels and measuring spheroid formation, survival, cytokine secretion, and gene expression of IL-4−DCs. Mature IL-4−DCs in cell culture vessels (cluster−controlled IL-4−DCs: cc−IL-4−DCs) displayed increased levels of CD80, CD86, and CD40 compared with that of la−IL-4−DCs. cc−IL-4−DCs induced antigen−specific cytotoxic T lymphocytes (CTLs) with a human leukocyte antigen (HLA)−restricted melanoma antigen recognized by T cells 1 (MART−1) peptide. Additionally, cc−IL-4−DCs produced higher levels of IFN−γ, possessing the CTL induction. Furthermore, DNA microarrays revealed the upregulation of BCL2A1, a pro−survival gene. According to these findings, the cc−IL-4−DCs are useful for generating homogeneous and functional IL-4−DCs that would be expected to promote long−lasting effects in DC vaccines.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Roberta Rizzo ◽  
Maria D’Accolti ◽  
Daria Bortolotti ◽  
Francesca Caccuri ◽  
Arnaldo Caruso ◽  
...  

2021 ◽  
Vol 9 (10) ◽  
pp. e003050
Author(s):  
Chia-Ing Jan ◽  
Shi-Wei Huang ◽  
Peter Canoll ◽  
Jeffrey N Bruce ◽  
Yu-Chuan Lin ◽  
...  

BackgroundImmunotherapy against solid tumors has long been hampered by the development of immunosuppressive tumor microenvironment, and the lack of a specific tumor-associated antigen that could be targeted in different kinds of solid tumors. Human leukocyte antigen G (HLA-G) is an immune checkpoint protein (ICP) that is neoexpressed in most tumor cells as a way to evade immune attack and has been recently demonstrated as a useful target for chimeric antigen receptor (CAR)-T therapy of leukemia by in vitro studies. Here, we design and test for targeting HLA-G in solid tumors using a CAR strategy.MethodsWe developed a novel CAR strategy using natural killer (NK) cell as effector cells, featuring enhanced cytolytic effect via DAP12-based intracellular signal amplification. A single-chain variable fragment (scFv) against HLA-G is designed as the targeting moiety, and the construct is tested both in vitro and in vivo on four different solid tumor models. We also evaluated the synergy of this anti-HLA-G CAR-NK strategy with low-dose chemotherapy as combination therapy.ResultsHLA-G CAR-transduced NK cells present effective cytolysis of breast, brain, pancreatic, and ovarian cancer cells in vitro, as well as reduced xenograft tumor growth with extended median survival in orthotopic mouse models. In tumor coculture assays, the anti-HLA-G scFv moiety promotes Syk/Zap70 activation of NK cells, suggesting reversal of the HLA-G-mediated immunosuppression and hence restoration of native NK cytolytic functions. Tumor expression of HLA-G can be further induced using low-dose chemotherapy, which when combined with anti-HLA-G CAR-NK results in extensive tumor ablation both in vitro and in vivo. This upregulation of tumor HLA-G involves inhibition of DNMT1 and demethylation of transporter associated with antigen processing 1 promoter.ConclusionsOur novel CAR-NK strategy exploits the dual nature of HLA-G as both a tumor-associated neoantigen and an ICP to counteract tumor spread. Further ablation of tumors can be boosted when combined with administration of chemotherapeutic agents in clinical use. The readiness of this novel strategy envisions a wide applicability in treating solid tumors.


2017 ◽  
Author(s):  
Michal Bassani-Sternberg ◽  
Chloé Chong ◽  
Philippe Guillaume ◽  
Marthe Solleder ◽  
HuiSong Pak ◽  
...  

AbstractThe precise identification of Human Leukocyte Antigen class I (HLA-I) binding motifs plays a central role in our ability to understand and predict (neo-)antigen presentation in infectious diseases and cancer. Here, by exploiting co-occurrence of HLA-I alleles across ten newly generated as well as forty public HLA peptidomics datasets comprising more than 115,000 unique peptides, we show that we can rapidly and accurately identify many HLA-I binding motifs and map them to their corresponding alleles without any a priori knowledge of HLA-I binding specificity. Our approach recapitulates and refines known motifs for 43 of the most frequent alleles, uncovers new motifs for 9 alleles that up to now had less than five known ligands and provides a scalable framework to incorporate additional HLA peptidomics studies in the future. The refined motifs improve neo-antigen and cancer testis antigen predictions, indicating that unbiased HLA peptidomics data are ideal for in silico predictions of neo-antigens from tumor exome sequencing data. The new motifs further reveal allosteric modulation of the binding specificity of HLA-I alleles and we unravel the underlying mechanisms by protein structure analysis, mutagenesis and in vitro binding assays.


Author(s):  
Muhammad Ali ◽  
Eirini Giannakopoulou ◽  
Yingqian Li ◽  
Madeleine Lehander ◽  
Stina Virding Culleton ◽  
...  

AbstractUnlike chimeric antigen receptors, T-cell receptors (TCRs) can recognize intracellular targets presented on human leukocyte antigen (HLA) molecules. Here we demonstrate that T cells expressing TCRs specific for peptides from the intracellular lymphoid-specific enzyme terminal deoxynucleotidyl transferase (TdT), presented in the context of HLA-A*02:01, specifically eliminate primary acute lymphoblastic leukemia (ALL) cells of T- and B-cell origin in vitro and in three mouse models of disseminated B-ALL. By contrast, the treatment spares normal peripheral T- and B-cell repertoires and normal myeloid cells in vitro, and in vivo in humanized mice. TdT is an attractive cancer target as it is highly and homogeneously expressed in 80–94% of B- and T-ALLs, but only transiently expressed during normal lymphoid differentiation, limiting on-target toxicity of TdT-specific T cells. TCR-modified T cells targeting TdT may be a promising immunotherapy for B-ALL and T-ALL that preserves normal lymphocytes.


2005 ◽  
Vol 202 (3) ◽  
pp. 425-435 ◽  
Author(s):  
Hiroyuki Yoneyama ◽  
Kenjiro Matsuno ◽  
Etsuko Toda ◽  
Tetsu Nishiwaki ◽  
Naoki Matsuo ◽  
...  

Antiviral cell–mediated immunity is initiated by the dendritic cell (DC) network in lymph nodes (LNs). Plasmacytoid DCs (pDCs) are known to migrate to inflamed LNs and produce interferon (IFN)-α, but their other roles in antiviral T cell immunity are unclear. We report that LN-recruited pDCs are activated to create local immune fields that generate antiviral cytotoxic T lymphocytes (CTLs) in association with LNDCs, in a model of cutaneous herpes simplex virus (HSV) infection. Although pDCs alone failed to induce CTLs, in vivo depletion of pDCs impaired CTL-mediated virus eradication. LNDCs from pDC-depleted mice showed impaired cluster formation with T cells and antigen presentation to prime CTLs. Transferring circulating pDC precursors from wild-type, but not CXCR3-deficient, mice to pDC-depleted mice restored CTL induction by impaired LNDCs. In vitro co-culture experiments revealed that pDCs provided help signals that recovered impaired LNDCs in a CD2- and CD40L-dependent manner. pDC-derived IFN-α further stimulated the recovered LNDCs to induce CTLs. Therefore, the help provided by pDCs for LNDCs in primary immune responses seems to be pivotal to optimally inducing anti-HSV CTLs.


Nature ◽  
2021 ◽  
Author(s):  
Mark Yarmarkovich ◽  
Quinlen F. Marshall ◽  
John M. Warrington ◽  
Rasika Premaratne ◽  
Alvin Farrel ◽  
...  

AbstractThe majority of oncogenic drivers are intracellular proteins, thus constraining their immunotherapeutic targeting to mutated peptides (neoantigens) presented by individual human leukocyte antigen (HLA) allotypes1. However, most cancers have a modest mutational burden that is insufficient to generate responses using neoantigen-based therapies2,3. Neuroblastoma is a paediatric cancer that harbours few mutations and is instead driven by epigenetically deregulated transcriptional networks4. Here we show that the neuroblastoma immunopeptidome is enriched with peptides derived from proteins that are essential for tumourigenesis and focus on targeting the unmutated peptide QYNPIRTTF, discovered on HLA-A*24:02, which is derived from the neuroblastoma dependency gene and master transcriptional regulator PHOX2B. To target QYNPIRTTF, we developed peptide-centric chimeric antigen receptors (CARs) using a counter-panning strategy with predicted potentially cross-reactive peptides. We further hypothesized that peptide-centric CARs could recognize peptides on additional HLA allotypes when presented in a similar manner. Informed by computational modelling, we showed that PHOX2B peptide-centric CARs also recognize QYNPIRTTF presented by HLA-A*23:01 and the highly divergent HLA-B*14:02. Finally, we demonstrated potent and specific killing of neuroblastoma cells expressing these HLAs in vitro and complete tumour regression in mice. These data suggest that peptide-centric CARs have the potential to vastly expand the pool of immunotherapeutic targets to include non-immunogenic intracellular oncoproteins and widen the population of patients who would benefit from such therapy by breaking conventional HLA restriction.


Transfusion ◽  
2009 ◽  
Vol 49 (2) ◽  
pp. 243-251 ◽  
Author(s):  
Philip J. Norris ◽  
Jar-How Lee ◽  
Danielle M. Carrick ◽  
Jerome L. Gottschall ◽  
Mila Lebedeva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document