scholarly journals An Improved Grid-Xinanjiang Model and Its Application in the Jinshajiang Basin, China

Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1265
Author(s):  
Changqing Meng ◽  
Jianzhong Zhou ◽  
Deyu Zhong ◽  
Chao Wang ◽  
Jun Guo

A modified form of the distributed Grid-Xinanjiang model (GXAJ) characterizing the infiltration excess and saturation excess runoff mechanisms coupled to a two-source potential evapotranspiration model (TSPE) was proposed to simulate the hydrological process and study the spatiotemporal pattern of the precipitation, evapotranspiration, and soil moisture in the Jinshajiang River basin. In the flow routing module, the flow is routed by the physically nonlinear Muskingum–Cunge method. The TSPE model can calculate the spatiotemporal variation of the potential canopy transpiration (CT), interception evaporation (IE), and potential soil evaporation (SE). Subsequently, the calculated potential evapotranspiration (PE) is coupled to the GXAJ model to calculate the water budget in each grid. An a priori parameter estimation was developed to obtain the spatially varied parameters from geographical data, including digital elevation model (DEM) data, soil data, vegetation data, and routing data. Hydrometeorological data were interpolated to 4750 grids with cell sizes of 10 × 10 km by the Thiessen Polygon method. The DEM data was used to extract the flow direction, river length, hillslope, and channel slopes and to adjust the altitude-related meteorological variables. The reprocessed Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) from the Beijing Normal University (BNU) dataset, which has a spatial resolution of 1 km × 1 km, was used to obtain the spatiotemporal variation in the LAI. The developed GXAJ model was applied to three sub-basins in the Jinshajiang River basin and was compared to the traditional GXAJ model. The developed GXAJ model satisfactorily reproduced the streamflow at each catchment outlet and matched the peak discharges better than the traditional GXAJ model for both the dry and wet seasons. The uneven distribution of the simulated mean annual evapotranspiration in the whole watershed was closely related to the vegetation types, ranging from 189.81 to 585.45 mm. Forest and woodland, shrubland, grassland, and cropland were shown to have mean annual evapotranspiration values of 485.6, 289.4, 275.9, and 392.3 mm, respectively. The ratios of the annual evapotranspiration to precipitation (E/P) of the forest, woodland, shrubland, grassland, and cropland were 54, 83, 53, and 48%, respectively.

2009 ◽  
Vol 13 (7) ◽  
pp. 1375-1398 ◽  
Author(s):  
S. Liu ◽  
X. Mo ◽  
W. Zhao ◽  
V. Naeimi ◽  
D. Dai ◽  
...  

Abstract. The change pattern and trend of soil moisture (SM) in the Wuding River basin, Loess Plateau, China is explored based on the simulated long-term SM data from 1956 to 2004 using an eco-hydrological process-based model, Vegetation Interface Processes model, VIP. In-situ SM observations together with a remotely sensed SM dataset retrieved by the Vienna University of Technology are used to validate the model. In the VIP model, climate-eco-hydrological (CEH) variables such as precipitation, air temperature and runoff observations and also simulated evapotranspiration (ET), leaf area index (LAI), and vegetation production are used to analyze the soil moisture evolution mechanism. The results show that the model is able to capture seasonal SM variations. The seasonal pattern, multi-year variation, standard deviation and coefficient of variation (CV) of SM at the daily, monthly and annual scale are well explained by CEH variables. The annual and inter-annual variability of SM is the lowest compared with that of other CEH variables. The trend analysis shows that SM is in decreasing tendency at α=0.01 level of significance, confirming the Northern Drying phenomenon. This trend can be well explained by the decreasing tendency of precipitation (α=0.1) and increasing tendency of temperature (α=0.01). The decreasing tendency of runoff has higher significance level (α=0.001). Because of SM's decreasing tendency, soil evaporation (ES) is also decreasing (α=0.05). The tendency of net radiation (Rn), evapotranspiration (ET), transpiration (EC), canopy intercept (EI) is not obvious. Net primary productivity (NPP), of which the significance level is lower than α=0.1, and gross primary productivity (GPP) at α=0.01 are in increasing tendency.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
André Ricardo Loewen ◽  
◽  
Adilson Pinheiro

ABSTRACT Overland flow in watersheds is responsible for the occurrence of various environmental problems, including flood formation, erosion and the transportation of sediment, and the addition of pollutants to the soil. Additionally, understanding this hydrological process is fundamental to improving knowledge regarding individual interest factors in a region, since it interferes with agricultural productivity and water supply for both the population and industry, among other contributions. Two principal theorists have described the overland flow generation processes: Horton (1933) and Dunne (1978). The TOPMODEL (a topography-based hydrological model) approach represents the overland flow by variable contribution areas, which develop along the watercourses following the concept of Dunne’s overland flow. Thus, this study aimed to evaluate the mechanisms of overland flow generated in the Concórdia River basin based on the application of the TOPMODEL, using measured hydrological data obtained from a high frequency installed monitoring network. Discharge data series were performed for three sub-basins: SF3 (29.74 km2), SF2 (5.81 km2), and SF1 (2.36 km2). In these sub-basins, the flood hydrograph were separated and its response conditions were verified in the TOPMODEL. Rainfall, discharge, and potential evapotranspiration data were used in an hourly scale for the three sub-basins. In general, the model showed adequate efficiency for the SF3 sub-basin; however, the SF2 and SF1 sub-basins showed distortion in its parameters, thereby delaying the simulated hydrograph in terms of time. Accordingly, the results corroborate the more frequent appearance of Dunnian overland flow in the SF3 sub-basin, where the topography is smoother and features large areas with a low slope, which serve as variable saturation areas. The SF2 and SF1 sub-basins present characteristics that strongly reflect Hortonian overland flow, with slopes in the topography that do not allow the frequent formation of variable contribution areas.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 731
Author(s):  
Zhuoqing Hao ◽  
Jixia Huang ◽  
Yantao Zhou ◽  
Guofei Fang

The Yangtze River Basin is among the river basins with the strongest strategic support and developmental power in China. As an invasive species, the pinewood nematode (PWN) Bursaphelenchus xylophilus has introduced a serious obstacle to the high-quality development of the economic and ecological synchronization of the Yangtze River Basin. This study analyses the occurrence and spread of pine wilt disease (PWD) with the aim of effectively managing and controlling the spread of PWD in the Yangtze River Basin. In this study, statistical data of PWD-affected areas in the Yangtze River Basin are used to analyse the occurrence and spread of PWD in the study area using spatiotemporal visualization analysis and spatiotemporal scanning statistics technology. From 2000 to 2018, PWD in the study area showed an “increasing-decreasing-increasing” trend, and PWD increased explosively in 2018. The spatial spread of PWD showed a “jumping propagation-multi-point outbreak-point to surface spread” pattern, moving west along the river. Important clusters were concentrated in the Jiangsu-Zhejiang area from 2000 to 2015, forming a cluster including Jiangsu and Zhejiang. Then, from 2015–2018, important clusters were concentrated in Chongqing. According to the spatiotemporal scanning results, PWD showed high aggregation in the four regions of Zhejiang, Chongqing, Hubei, and Jiangxi from 2000 to 2018. In the future, management systems for the prevention and treatment of PWD, including ecological restoration programs, will require more attention.


2021 ◽  
Vol 13 (2) ◽  
pp. 303
Author(s):  
Shi Hu ◽  
Xingguo Mo

Using the Global Land Surface Satellite (GLASS) leaf area index (LAI), the actual evapotranspiration (ETa) and available water resources in the Mekong River Basin were estimated with the Remote Sensing-Based Vegetation Interface Processes Model (VIP-RS). The relative contributions of climate variables and vegetation greening to ETa were estimated with numerical experiments. The results show that the average ETa in the entire basin increased at a rate of 1.16 mm year−2 from 1980 to 2012 (36.7% of the area met the 95% significance level). Vegetation greening contributed 54.1% of the annual ETa trend, slightly higher than that of climate change. The contributions of air temperature, precipitation and the LAI were positive, whereas contributions of solar radiation and vapor pressure were negative. The effects of water supply and energy availability were equivalent on the variation of ETa throughout most of the basin, except the upper reach and downstream Mekong Delta. In the upper reach, climate warming played a critical role in the ETa variability, while the warming effect was offset by reduced solar radiation in the Mekong Delta (an energy-limited region). For the entire basin, the available water resources showed an increasing trend due to intensified precipitation; however, in downstream areas, additional pressure on available water resources is exerted due to cropland expansion with enhanced agricultural water consumption. The results provide scientific basis for practices of integrated catchment management and water resources allocation.


2005 ◽  
Vol 2 (3) ◽  
pp. 639-690 ◽  
Author(s):  
G. P. Zhang ◽  
H. H. G. Savenije

Abstract. Based on the Representative Elementary Watershed (REW) approach, the modelling tool REWASH (Representative Elementary WAterShed Hydrology) has been developed and applied to the Geer river basin. REWASH is deterministic, semi-distributed, physically based and can be directly applied to the watershed scale. In applying REWASH, the river basin is divided into a number of sub-watersheds, so called REWs, according to the Strahler order of the river network. REWASH describes the dominant hydrological processes, i.e. subsurface flow in the unsaturated and saturated domains, and overland flow by the saturation-excess and infiltration-excess mechanisms. Through flux exchanges among the different spatial domains of the REW, surface and subsurface water interactions are fully coupled. REWASH is a parsimonious tool for modelling watershed hydrological response. However, it can be modified to include more components to simulate specific processes when applied to a specific river basin where such processes are observed or considered to be dominant. In this study, we have added a new component to simulate interception using a simple parametric approach. Interception plays an important role in the water balance of a watershed although it is often disregarded. In addition, a refinement for the transpiration in the unsaturated zone has been made. Finally, an improved approach for simulating saturation overland flow by relating the variable source area to both the topography and the groundwater level is presented. The model has been calibrated and verified using a 4-year data set, which has been split into two for calibration and validation. The model performance has been assessed by multi-criteria evaluation. This work is the first full application of the REW approach to watershed rainfall-runoff modelling in a real watershed. The results demonstrate that the REW approach provides an alternative blueprint for physically based hydrological modelling.


Sign in / Sign up

Export Citation Format

Share Document