scholarly journals Three-Dimensional Aerators: Characteristics of the Air Bubbles

Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1430
Author(s):  
Shuai Li ◽  
Jianmin Zhang ◽  
Xiaoqing Chen ◽  
Jiangang Chen

Three-dimensional aerators are often used in hydraulic structures to prevent cavitation damage via enhanced air entrainment. However, the mechanisms of aeration and bubble dispersion along the developing shear flow region on such aerators remain unclear. A double-tip conductivity probe is employed in present experimental study to investigate the air concentration, bubble count rate, and bubble size downstream of a three-dimensional aerator involving various approach-flow features and geometric parameters. The results show that the cross-sectional distribution of the air bubble frequency is in accordance with the Gaussian distribution, and the relationship between the air concentration and bubble frequency obeys a quasi-parabolic law. The air bubble frequency reaches an apex at an air concentration (C) of approximately 50% and decreases to zero as C = 0% and C = 100%. The relative location of the air-bubble frequency apex is 0.210, 0.326 and 0.283 times the thickness of the layers at the upper, lower and side nappes, respectively. The air bubble chord length decreases gradually from the air water interface to the core area. The air concentration increases exponentially with the bubble chord length. The air bubble frequency distributions can be fit well using a “modified” gamma distribution function.

1997 ◽  
Vol 119 (3) ◽  
pp. 603-608 ◽  
Author(s):  
P. D. Cummings ◽  
H. Chanson

When a water jet impinges a pool of water at rest, air bubbles may be entrained and carried away below the pool free surface: this process is called plunging jet entrainment. The study presents new experimental data obtained with a vertical supported jet. Distributions of air concentration and mean air-water velocity, and bubble chord length distributions measured in the developing shear layer are presented. The results indicate that the distributions of void fraction follow closely analytical solution of the diffusion equation. Further, the momentum shear layer and the air bubble diffusion layer do not coincide. Chord length data show a wide range of air bubble sizes and overall the experimental results suggest strong interactions between the entrained air bubbles and the momentum transfer mechanisms.


2004 ◽  
Vol 31 (5) ◽  
pp. 880-891 ◽  
Author(s):  
Mehmet Ali Kökpinar

High-speed two-phase flows over a 30° stepped flume were experimentally investigated using macro-roughness elements. The roughness elements included combinations of steps and horizontal strips. Local values of air concentration, air bubble frequency, and mean chord lengths were measured by a fiber-optical instrumentation system in the air–water flow region. The range of unit discharge of water was varied from 0.06 to 0.20 m2/s. Three step configurations were studied: (i) without macro-roughness elements, (ii) with macro-roughness elements on each step, and (iii) with macro-roughness elements on each second step (AMR configuration). The results were compared in terms of onset flow conditions and internal air–water flow parameters such as local air concentration, mean air bubble chord length distribution, and air bubble frequency in the skimming flow regime. It was observed that the AMR configuration produced the maximum free-surface aeration among the other configurations. This alternative step geometry has potential for less cavitation damage than conventional step geometry because of the greater air entrainment.Key words: stepped chute, air-entrainment, air-water flow properties, macro-roughness elements, skimming flow.


Water SA ◽  
2019 ◽  
Vol 45 (2 April) ◽  
Author(s):  
Talia Tokyay ◽  
Can Kurt

A three-dimensional numerical model of ANSYS, Fluent (2011) was employed for studying mid to high discharge supercritical two-phase flow over a single slope spillway with a single step for aeration of the flow. In this study 18 simulations were conducted using the Volume of Fluid (VOF) method for air-water interface tracking and simple k-ɛ model for turbulence closure. Submerged circular shaped pipes located at the bottom of the step were utilized as aerators. Analyses concentrate on the air-entrainment phenomenon and jet-length of the flow from the step to the re-attachment point. The variables considered in the study are discharge, aerator size, different aerator arrangements, Froude number of the flow, presence of a ramp before the step and its angle. Observed jet-length values in this study were compared with two sets of empirical formulae from literature for code validation. Cross-sectional average of air concentration due to bottom aeration was determined in the streamwise direction downstream of the re-attachment of the jet. The air concentration is observed to follow a logarithmic decay in the flow direction within the de-aeration zone.


Author(s):  
F. M. El-Mahallawy ◽  
M. A. Hassan ◽  
M. A. Ismail ◽  
H. Zafan

The purpose of this paper is to present and evaluate numerical experiments illustrating the flow features in a 3-D furnace utilizing unconventional asymmetrical jet that creates natural recirculation zone. The numerical simulation of this aerodynamic stabilization method have unveiled the three-dimensional nature of the flow pattern which possesses a quite large reverse flow region. The size and strength of the built recirculation zone would be capable of stabilizing the burning of low-quality fuels.


1988 ◽  
Vol 110 (3) ◽  
pp. 393-400 ◽  
Author(s):  
R. J. Parker ◽  
D. G. Jones

Holography has been developed by Rolls-Royce as a technique for routine use in the evaluation of fan designs for aeroengines. It is used to investigate both aerodynamic and mechanical behavior of the rotating fan. Holographic flow visualization provides clear, three-dimensional images of the transonic flow region between the fan blades. Flow features such as shocks, shock/boundary layer interaction, and over-tip leakage vortices can be observed and measured. Holograms taken through an optical derotator allow vibration modes of the rotating fan to be mapped during resonance or flutter. Examples are given of the use of both techniques at rotational speeds up to and in excess of 10,000 rpm. Holography has provided valuable information used to verify and improve numerical modeling of the fan behavior and has been successful in evaluating the achievement of design intent.


Author(s):  
Behnam Mozaffari

This study aims to evaluate the accuracy of widely applied approach of modeling noncircular channels and washcoats of monolithic catalysts with equivalent circular geometrical shapes. For this purpose, catalytic performance of equivalent circular and square channel cross-sectional shapes with single-layer Pt/Al2O3 and dual-layer Fe-ZSM-5+Pt/Al2O3 washcoats are investigated. For the noncircular cross-sections, three-dimensional computational fluid dynamics models that consider species gases convection inside the channel bulk flow region, and reaction and diffusion of species inside the washcoat layer(s) are utilized to simulate the performance of one channel of the monolithic catalytic converters. In addition, in order to investigate the amount of inaccuracy of 2D modeling approach for noncircular channels, 2D models are applied to simulate the equivalent monolithic catalysts with circular cross-sections, and the results of the 2D and 3D models are compared together, and also, with the experimental and 1D+1D modeling technique results available in the literature.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 203
Author(s):  
James Yang ◽  
Penghua Teng ◽  
Junhu Nan ◽  
Shicheng Li ◽  
Anders Ansell

Air entrainment at the intake of a bottom outlet often gives rise to air pockets in its conduit and formation of geysers. The outlet in question comprises a bulkhead gate, gate shaft, horizontal conduit, and exit. Operations show that it suffers from appreciable flow fluctuations and blowouts in the tailwater, which leads to gate operation restrictions. For the purpose of understanding the hydraulic phenomenon, both prototype discharge tests and three-dimensional computational fluid dynamics (CFD) modeling of two-phase flows are performed. The operational focus of the facility are small and large gate openings. The CFD results reveal that, with air entrained in the gate shaft, continual breakup and coalescence of air bubbles in the conduit typify the flow. At small openings below 1 meter, the air–water flow is characterized by either distinct blowouts of regular frequency or continuous air release. In terms of geyser behaviors inclusive of frequency, the agreement is good between field and numerical studies. At large openings, the gate becomes fully submerged, and the flow is discharged without air entrainment and blowouts. The paper showcases the air–water flow features in a typical bottom outlet layout in Sweden, which is intended to serve as an illustration of the study procedure for other similar outlets.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 422
Author(s):  
Zhuoran Li ◽  
Akash Venkateshwaran ◽  
Shooka Karimpour

Breaking surge waves are highly turbulent three-dimensional (3D) flows, which occur when the water flow encounters a sudden change in depth or velocity. The 3D turbulent structures across a breaking surge are induced by the velocity gradient across the surge and phase discontinuity at the front. This paper examined the turbulent structures in breaking surge waves with Froude numbers of 1.71 and 2.13 by investigating the air entrainment and perturbation patterns across the surge front. A combination of the Volume Of Fluid (VOF) method and Large Eddy Simulation (LES) was utilized to capture air entrainment and turbulent structures simultaneously. The 3D nature of the vortical structures was simulated by implementing a spanwise periodic boundary. The water surface perturbation and air concentration profiles were extracted, and the averaged air concentration profiles obtained from the numerical simulations were consistent with laboratory observations reported in the literature. The linkage between turbulent kinetic energy distribution and air entrainment was also explored in this paper. Finally, using quadrant analysis and the Q-criterion, this paper examined the role of the spanwise perturbations in the development of turbulent structures in the surge front.


2020 ◽  
Vol 82 (2) ◽  
Author(s):  
Yeri Sutopo ◽  
Budi S. Wignyosukarto ◽  
Bambang Yulistyanto ◽  
Istiarto Istiarto ◽  
Nor Hayati Abdul Hamid

The Chanson’s equation for distribution of air bubbles in vertical direction in the developing zone at self-air entrainment condition is used when the air bubbles concentration at the flow surface is 90%. Otherwise, if this condition is not satisfying, then the equations of Straub and Anderson can be used. The results of these two equations are not similar with experimental results. Therefore, these two equations need to be modified accordingly. These modification equations can also be used to predict the air bubbles distributions in vertical direction. Hence, the main objective of this study is to modify these equations for vertical air concentration distribution in the developing zone and validate them with experimental results. The steep channel in the form of flume with 10 m long, 0.2 m wide and 0.4 m high with slopes varies between 20° and 25° were used in this experimental work. The discharge water was 9 l/s, 12 l/s and 21 l/s with Froude numbers between 6.9 to 8.0. The Thomson weir (V Notch) was used to calibrate the discharge flow of water. A set of video cameras was used to record the motion pictures of the air bubbles. The air bubble was analyzed using Ulead Video Studio 11 software program equipped with Imagej software. The results of this study indicates that the modifications of equations of Straub and Anderson were the equation air concentration distribution (C) in the underlying zone value was 0.647 m at 20° slope of channel bed, the equation air concentration distribution (C) in the underlying zone the value was 0.542 m at 25° slope and the equation in the mixing zone remained the same. The original Chanson equation was modified mainly in terms of the hyperbolic tangent (tanh) equation which originally had a power of 2 while the modification was 0.8; and the Ce was 0.9 sin α, whereas at the modified Chanson’s equation, Ce was converted into Ce= 0.6 sin α.


2004 ◽  
Vol 26 (2) ◽  
pp. 237 ◽  
Author(s):  
A. C. Grice ◽  
S. D. Campbell ◽  
J. R. McKenzie ◽  
L. V. Whiteman ◽  
M. Pattison ◽  
...  

Age-class frequency distributions are valuable means of describing plant populations because they can be used to infer population history. Variables other than age are also often used to describe plant populations, either because they more accurately reflect an attribute of interest, or because it is difficult to determine age. However, interpretation of frequency distributions based on variables other than age can be problematic. We discuss these problems and illustrate them using data from six populations of the invasive rangeland shrub Parkinsonia aculeata L. We used three different measures of plant size: height, canopy diameter and stem cross-sectional area. Structures based on these measures were compared with structures based on three different estimates of above-ground biomass derived from them. For each variable, structures differed greatly between populations, and for each population, they were strongly dependent on the variable used to describe it. Population structures based on three-dimensional variables (above-ground biomass) tend to be more strongly positively skewed than those based on two-dimensional (area) measures of plant size. These in turn are more strongly positively skewed than those based on one-dimensional (height, diameter) measures. The statistical basis of this general phenomenon is discussed. The results highlight the difficulties of deriving histories and projecting futures of populations from size-class frequency distributions without accompanying knowledge of the temporal patterns of change in size variables as plants grow.


Sign in / Sign up

Export Citation Format

Share Document