scholarly journals Impact of Bed Form Celerity on Oxygen Dynamics in the Hyporheic Zone

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 62 ◽  
Author(s):  
Philipp Wolke ◽  
Yoni Teitelbaum ◽  
Chao Deng ◽  
Jörg Lewandowski ◽  
Shai Arnon

Oxygen distribution and uptake in the hyporheic zone regulate various redox-sensitive reactions and influence habitat conditions. Despite the fact that fine-grain sediments in streams and rivers are commonly in motion, most studies on biogeochemistry have focused on stagnant sediments. In order to evaluate the effect of bed form celerity on oxygen dynamics and uptake in sandy beds, we conducted experiments in a recirculating indoor flume. Oxygen distribution in the bed was measured under various celerities using 2D planar optodes. Bed morphodynamics were measured by a surface elevation sensor and time-lapse photography. Oxygenated zones in stationary beds had a conchoidal shape due to influx through the stoss side of the bed form, and upwelling anoxic water at the lee side. Increasing bed celerity resulted in the gradual disappearance of the upwelling anoxic zone and flattening of the interface between the oxic (moving fraction of the bed) and the anoxic zone (stationary fraction of the bed), as well as in a reduction of the volumetric oxygen uptake rates due shortened residence times in the hyporheic zone. These results suggest that including processes related to bed form migration are important for understanding the biogeochemistry of hyporheic zones.

2006 ◽  
Vol 63 (1) ◽  
pp. 120-133 ◽  
Author(s):  
Tamao Kasahara ◽  
Alan R Hill

Stream restoration projects that aim to rehabilitate ecosystem health have not considered surface–subsurface linkages, although stream water and groundwater interaction has an important role in sustaining stream ecosystem functions. The present study examined the effect of constructed riffles and a step on hyporheic exchange flow and chemistry in restored reaches of several N-rich agricultural and urban streams in southern Ontario. Hydrometric data collected from a network of piezometers and conservative tracer releases indicated that the constructed riffles and steps were effective in inducing hyporheic exchange. However, despite the use of cobbles and boulders in the riffle construction, high stream dissolved oxygen (DO) concentrations were depleted rapidly with depth into the hyporheic zones. Differences between observed and predicted nitrate concentrations based on conservative ion concentration patterns indicated that these hyporheic zones were also nitrate sinks. Zones of low hydraulic conductivity and the occurrence of interstitial fines in the restored cobble-boulder layers suggest that siltation and clogging of the streambed may reduce the downwelling of oxygen- and nitrate-rich stream water. Increases in streambed DO levels and enhancement of habitat for hyporheic fauna that result from riffle–step construction projects may only be temporary in streams that receive increased sediment and nutrient inputs from urban areas and croplands.


2010 ◽  
Author(s):  
Jonathan E. Nyquist ◽  
Laura Toran ◽  
Allison C. Fang ◽  
Robert J. Ryan ◽  
Donald O. Rosenberry

2020 ◽  
Vol 28 (8) ◽  
pp. 2697-2712
Author(s):  
Robert Earon ◽  
Joakim Riml ◽  
Liwen Wu ◽  
Bo Olofsson

AbstractInteraction between surface water and groundwater plays a fundamental role in influencing aquatic chemistry, where hyporheic exchange processes, distribution of flow paths and residence times within the hyporheic zone will influence the transport of mass and energy in the surface-water/groundwater system. Geomorphological conditions greatly influence hyporheic exchange, and heterogeneities such as rocks and clay lenses will be a key factor for delineating the hyporheic zone. Electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) were used to investigate the streambed along a 6.3-m-long reach in order to characterise geological layering and distinct features which may influence parameters such as hydraulic conductivity. Time-lapse ERT measurements taken during a tracer injection demonstrated that geological features at the meter-scale played a determining role for the hyporheic flow field. The penetration depth of the tracer into the streambed sediment displayed a variable spatial pattern in areas where the presence of highly resistive anomalies was detected. In areas with more homogeneous sediments, the penetration depth was much more uniformly distributed than observed in more heterogeneous sections, demonstrating that ERT can play a vital role in identifying critical hydraulic features that may influence hyporheic exchange processes. Reciprocal ERT measurements linked variability and thus uncertainty in the modelled resistivity to the spatial locations, which also demonstrated larger variability in the tracer penetration depth, likely due to local heterogeneity in the hydraulic conductivity field.


2016 ◽  
Author(s):  
Emily B. Graham ◽  
Alex R. Crump ◽  
Charles T. Resch ◽  
Sarah Fansler ◽  
Evan Arntzen ◽  
...  

SummarySubsurface groundwater-surface water mixing zones (hyporheic zones) have enhanced biogeochemical activity, but assembly processes governing subsurface microbiomes remain a critical uncertainty in understanding hyporheic biogeochemistry. To address this obstacle, we investigated (a) biogeographical patterns in attached and waterborne microbiomes across three hydrologically-connected, physicochemically-distinct zones (inland hyporheic, nearshore hyporheic, and river); (b) assembly processes that generated these patterns; (c) groups of organisms that corresponded to deterministic changes in the environment; and (d) correlations between these groups and hyporheic metabolism. All microbiomes remained dissimilar through time, but consistent presence of similar taxa suggested dispersal and/or common selective pressures among zones. Further, we demonstrated a pronounced impact of deterministic assembly in all microbiomes as well as seasonal shifts from heterotrophic to autotrophic microorganisms associated with increases in groundwater discharge. The abundance of one statistical cluster of organisms increased with active biomass and respiration, revealing organisms that may strongly influence hyporheic biogeochemistry. Based on our results, we propose a conceptualization of hyporheic zone metabolism in which increased organic carbon concentrations during surface water intrusion support heterotrophy, which succumbs to autotrophy under groundwater discharge. These results provide new opportunities to enhance microbially-explicit ecosystem models describing hyporheic zone biogeochemistry and its influence over riverine ecosystem function.Originality-Significance StatementSubsurface zones of groundwater and surface water mixing (hyporheic zones) are hotspots of biogeochemical activity and strongly influence carbon, nutrient and contaminant dynamics within riverine ecosystems. Hyporheic zone microbiomes are responsible for up to 95% of riverine ecosystem respiration, yet the ecology of these microbiomes remains poorly understood. While significant progress is being made in the development of microbially-explicit ecosystem models, poor understanding of hyporheic zone microbial ecology impedes development of such models in this critical zone. To fill the knowledge gap, we present a comprehensive analysis of biogeographical patterns in hyporheic microbiomes as well as the ecological processes that govern their composition and function through space and time. Despite pronounced hydrologic connectivity throughout the hyporheic zone—and thus a strong potential for dispersal—we find that ecological selection deterministically governs microbiome composition within local environments, and we identify specific groups of organisms that correspond to seasonal changes in hydrology. Based on our results, we propose a conceptual model for hyporheic zone metabolism in which comparatively high-organic C conditions during surface water intrusion into the hyporheic zone support heterotrophic metabolisms that succumb to autotrophy during time periods of groundwater discharge. These results provide new opportunities to develop microbially-explicit ecosystem models that incorporate the hyporheic zone and its influence over riverine ecosystem function.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262080
Author(s):  
Geoffrey C. Poole ◽  
S. Kathleen Fogg ◽  
Scott J. O’Daniel ◽  
Byron E. Amerson ◽  
Ann Marie Reinhold ◽  
...  

Hyporheic exchange is now widely acknowledged as a key driver of ecosystem processes in many streams. Yet stream ecologists have been slow to adopt nuanced hydrologic frameworks developed and applied by engineers and hydrologists to describe the relationship between water storage, water age, and water balance in finite hydrosystems such as hyporheic zones. Here, in the context of hyporheic hydrology, we summarize a well-established mathematical framework useful for describing hyporheic hydrology, while also applying the framework heuristically to visualize the relationships between water age, rates of hyporheic exchange, and water volume within hyporheic zones. Building on this heuristic application, we discuss how improved accuracy in the conceptualization of hyporheic exchange can yield a deeper understanding of the role of the hyporheic zone in stream ecosystems. Although the equations presented here have been well-described for decades, our aim is to make the mathematical basis as accessible as possible and to encourage broader understanding among aquatic ecologists of the implications of tailed age distributions commonly observed in water discharged from and stored within hyporheic zones. Our quantitative description of “hyporheic hydraulic geometry,” associated visualizations, and discussion offer a nuanced and realistic understanding of hyporheic hydrology to aid in considering hyporheic exchange in the context of river and stream ecosystem science and management.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2230 ◽  
Author(s):  
Jörg Lewandowski ◽  
Shai Arnon ◽  
Eddie Banks ◽  
Okke Batelaan ◽  
Andrea Betterle ◽  
...  

Rivers are important ecosystems under continuous anthropogenic stresses. The hyporheic zone is a ubiquitous, reactive interface between the main channel and its surrounding sediments along the river network. We elaborate on the main physical, biological, and biogeochemical drivers and processes within the hyporheic zone that have been studied by multiple scientific disciplines for almost half a century. These previous efforts have shown that the hyporheic zone is a modulator for most metabolic stream processes and serves as a refuge and habitat for a diverse range of aquatic organisms. It also exerts a major control on river water quality by increasing the contact time with reactive environments, which in turn results in retention and transformation of nutrients, trace organic compounds, fine suspended particles, and microplastics, among others. The paper showcases the critical importance of hyporheic zones, both from a scientific and an applied perspective, and their role in ecosystem services to answer the question of the manuscript title. It identifies major research gaps in our understanding of hyporheic processes. In conclusion, we highlight the potential of hyporheic restoration to efficiently manage and reactivate ecosystem functions and services in river corridors.


2021 ◽  
Vol 3 ◽  
Author(s):  
Karina Cucchi ◽  
Nicolas Flipo ◽  
Agnès Rivière ◽  
Yoram N. Rubin

Located in the critical zone at the intersection between surface water and groundwater, hyporheic zones (HZ) host a variety of hydrological, biological and biogeochemical processes regulating water availability and quality and sustaining riverine ecosystems. However, difficulty in quantifying water fluxes along this interface has limited our understanding of these processes, in particular under dynamic flow conditions where rapid variations can impact large-scale HZ biogeochemical function. In this study, we introduce an innovative measurement assimilation chain for determining uncertainty-quantified hydraulic and thermal HZ properties, as well as associated uncertainty-quantified high-frequency water fluxes. The chain consists in the assimilation of data collected with the LOMOS-mini geophysical device with a process-based, Bayesian approach. The application of this approach on a synthetic case study shows that hydraulic and thermal HZ properties can be estimated from LOMOS-mini measurements, their identifiability depending on the Peclet number – summarizing the hydrological and thermal regime. Hydraulic conductivity values can be estimated with precision when greater than ~10−5m · s−1 when other HZ properties are unknown, with decreasing uncertainty when other HZ properties are known prior to starting the LOMOS-mini measurement assimilation procedure. Water fluxes can be estimated in all regimes with varying accuracy, highest accuracy is reached for fluxes greater than ~10−6m · s−1, except under highly conductive exfiltration regimes. We apply the methodology on in situ datasets by deriving uncertainty-quantified HZ properties and water fluxes for 2 data points collected during field campaigns. This study demonstrates that the LOMOS-mini monitoring technology can be used as complete and stand-alone sampling solution for quantifying water and heat exchanges under dynamic exchange conditions (time resolution < 15 min).


<i>Abstract.</i>—The applicability of catchment indicators for predicting aquatic invertebrate responses in both vertical and lateral dimensions of river ecosystems is poorly understood. Therefore, our objective was to determine whether landscape indicators can predict coupled benthic-hyporheic responses in river and riparian environments. To do so, we assessed the relationships between the proportion of crop fields, instream habitat conditions, and abundance of larval and adult Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa in (and from) benthic and hyporheic zones of a 15-km segment of the Satsunai River (catchment area: 725 km2), eastern Hokkaido, northern Japan. Invertebrates were collected using colonization traps (hyporheic taxa), Surber sampler (benthic taxa), and Malaise traps (adults). We first identified insect taxa belonging to each of the benthic dwellers (EPT, excluding chloroperlid Plectoptera) and hyporheic dwellers (chloroperlid Plectoptera) based on the relative unit-volume abundances in benthic zone (7-cm surficial part of riverbed) and hyporheic zone (30 and 50 cm deep). Nitrate concentration and total chlorophyll, the abundance of larval insects in both zones, and adult insects from the benthic zone increased with an increasing proportion of crop fields. In contrast, the abundance of adult invertebrates originating from the hyporheic zone maximized in the area with an intermediate proportion of crop fields. We attributed this disparity to the spatial variability in total availability of functional hyporheic habitat in a vertical dimension, which could not be explained by the abundance estimates on a unit-volume basis. Overall, the proportion of crop fields in a catchment can be used to predict numerically similar (coupled) abundance responses of EPT larvae in river benthic and hyporheic zones. Furthermore, the use of landscape indicators in predicting coupled benthic-hyporheic responses in the riparian zone can be improved with information on the vertical extent of functional hyporheic habitat.


Geophysics ◽  
2021 ◽  
pp. 1-55
Author(s):  
Ariel Rickel ◽  
Beth Hoagland ◽  
Alexis Navarre-Sitchler ◽  
Kamini Singha

The efficacy of the hyporheic zone (HZ) — where surface water and groundwater mix — for processing nutrients or uptake of metals is dependent on streambed hydraulic conductivity and stream discharge, among other characteristics. Here, we explore electrical resistivity tomography (ERT) of hyporheic exchange in Cement Creek near Silverton, Colorado, which is affected by ferricrete precipitation. To quantify flows through the HZ, we conducted four-hour salt injection tracer tests and collected time-lapse ERT of the streambed and banks of Cement Creek at high and low flow. We installed piezometers to conduct slug tests, which suggested a low permeability zone at 44-cm depth likely comprised of ferricrete that cemented cobbles together. Based on the ERT, the tracer released into the stream was constrained within the shallow streambed with little subsurface flow through the banks. Tracer was detected in the HZ for a longer time at high flow compared to low flow, suggesting that more flow paths were available to connect the stream to the HZ. Tracer was confined above the ferricrete layer during both the high- and low-flow tests. Mass transfer and storage area parameters were calculated from combined analysis of apparent bulk conductivity derived from ERT and numerical modeling of the tracer breakthrough curves. The hyporheic storage area estimated at low discharge (0.1 m2) was smaller than at high discharge (0.4 m2) and residence times were 2.7 h at low discharge and 4.1 h at high discharge. During high discharge, in-stream breakthrough curves displayed slower breakthrough and longer tails, which was consistent with the time-lapse electrical inversions and One-dimensional Transport with Inflow and Storage (OTIS) modeling. Our findings indicate that ferricrete reduces the hydraulic conductivity of the streambed and limits the areal extent of the HZ, which may lower the potential for pollutant attenuation from the metal-rich waters of Cement Creek.


Sign in / Sign up

Export Citation Format

Share Document