scholarly journals Functional Groups of Phytoplankton and Their Relationship with Environmental Factors in the Restored Uzarzewskie Lake

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 313 ◽  
Author(s):  
Anna Kozak ◽  
Agnieszka Budzyńska ◽  
Renata Dondajewska-Pielka ◽  
Katarzyna Kowalczewska-Madura ◽  
Ryszard Gołdyn

Uzarzewskie Lake is a small, postglacial lake, located in western Poland. The lake is under restoration treatment since 2006. At first, iron treatment was done for 2 years. In the second stage, spring water was directed into the hypolimnion in order to improve water oxygenation near the bottom sediments. The purpose of our research was to determine changes in the contribution of functional groups to the total number of taxa and total biomass of phytoplankton due to changes in the physical and chemical characteristics of the restored lake. Phytoplankton composition was analyzed in three periods: (1) before restoration; (2) during the first method of restoration; and (3) when the second method was implemented in the lake. Epilimnetic phytoplankton was sampled every year monthly from March to November. The relationship between phytoplankton groups and environmental factors (water temperature, ammonium nitrogen, nitrate nitrogen, dissolved phosphorus, conductivity and pH) was examined, using the canonical analyses. The redundancy analysis indicated that the temperature, dissolved phosphates concentration, ammonium nitrogen and pH were the main determining factors of the phytoplankton community dynamics. During the study, 13 coda dominated the phytoplankton biomass. Cyanobacteria of the codon H1 with such species as Aphanizomenon gracile, Dolichospermum planctonicum, D. viguieri dominated the phytoplankton community before restoration. S1 group consisting of Planktolyngbya limnetica, Limnothrix redekei and Planktothrix agardhii mostly dominated during the period in which the first method was used. Improvement of water quality due to restoration efforts in the third period caused dominance of other groups, especially J (Actinastrum hantzschii and other Chlorococcales), C (Asterionella formosa and other diatoms), Y (Cryptomonas marssonii and other cryptophytes), Lo (Peridiniopsis cunningtonii and other dinophytes) and X2 (Rhodomonas lacustris).

A study has been made of the distribution and activities of bacteria and zooplankton as they varied seasonally in 1980 and 1981 in the vicinity of a shallow-sea tidal mixing front in the western Irish Sea (approximate position 53° 20' N, 5° 45' W to 53° 50' N, 5° 0' W ). This paper presents the physical and chemical background to these studies as shown by the variations in temperature and salinity and concentrations of chlorophyll a , phaeopigments, cellular adenosine triphosphate (ATP), nitrate, nitrite and ammonium nitrogen, in sections normal to the front. Observations at drogue stations were made to establish the extent of diurnal variations in these properties but these appeared to be small relative to other variations. As the front developed, higher chlorophyll a concentrations appeared in the surface stratified water, in contrast to the bottom stratified water and mixed water, with highest concentrations at the surface at the stratified side of the front and in subsurface patches in the vicinity of the pycnocline. As the phytoplankton populations increased nitrate became depleted in the surface stratified water but nitrite and ammonium nitrogen concentrations remained at about the same levels. Cellular ATP concentration did not appear to be a useful measure of total biomass but indicated high biological activity in the surface stratified water.


Author(s):  
Mei-Lin Wu ◽  
Yan-Ying Zhang ◽  
Jun-De Dong ◽  
Chuang-Hua Cai ◽  
You-Shao Wang ◽  
...  

AbstractIn this work, we analyze environmental (physical and chemical) and biological (phytoplankton) data obtained in Sanya Bay during four cruises, carried out in January, April, August, and October. The main objective of this study was to identify the key environmental factors affecting phytoplankton structure and bacterioplankton in the bay. Results suggest that spatial variations in the phytoplankton community and bacterioplankton biomass are the result of nutrients. Temporal variation in the abundance of bacterioplankton and phytoplankton are affected by a combination of physical and biological factors, such as temperature and nutrients. The silicate, phosphate, and nitrogen phytoplankton require for growth may be co-limited. Monsoon winds (a southwestern monsoon during summer and a northeastern monsoon during winter) play important roles in controlling the phytoplankton community and bacterioplankton abundance in Sanya Bay, northern South China Sea.


2017 ◽  
Vol 29 (0) ◽  
Author(s):  
Barbara Furrigo Zanco ◽  
Alfonso Pineda ◽  
Jascieli Carla Bortolini ◽  
Susicley Jati ◽  
Luzia Cleide Rodrigues

Abstract Aim: The objective of this study was to evaluate the efficacy of phytoplankton functional groups as indicators of environmental conditions in floodplain rivers and lakes with different trophic state and connectivity degree to the Paraná River. Phytoplankton functional groups (FGs) cluster sensitive species to environmental variation and can be an alternative for environmental monitoring. Methods Samples were performed quarterly from 2010 to 2013 in the Ivinhema, Paraná and Baia Rivers and in three lakes permanently connected to each river. Results 419 taxa were identified, and those taxa that had values greater than 5% of the total biovolume were classified into FGs (P, C, A, B, MP, H1, W1, J, TD, LO, and N). The lakes presented higher biovolume and were more productive than rivers, especially in the dry periods. The rivers presented light limitation and low phytoplankton development. The FG LO was an indicator in rainy seasons. Both rivers and lakes were mostly oligotrophic. We registered FG indicators only for the lakes (A, B, C, E, LO, P, and W1) and mesotrophic environments (A, B, C, E, J, LO, and P). Conclusion The FGs reflected the seasonal variation and the trophic state of environments in the upper Paraná River floodplain, mainly in the lentic environments. The species-environment relationship (FGs as indicators) was clearer in the lakes, probably because of the longer water retention that allows evidencing the response of the phytoplankton community to environmental factors. On the other hand, the absence of FGs as indicators in the rivers could be due to the high water flow that promotes dispersal stochasticity and masks the relationship between the environmental factors and the phytoplankton community. Thus, phytoplankton FGs proved to be a viable tool to evaluate the environmental conditions in a floodplain.


Author(s):  
Guojia Huang ◽  
Qiuhua Li ◽  
Xiaoqing Wang ◽  
Mengshu Han ◽  
Lei Li ◽  
...  

<p>The functional groups approach is an efficient way to analyze seasonal changes in phytoplankton biomass as it is based on the physiological, morphological, and ecological attributes of the species. In this study, we identified the functional groups and driving factors behind short-term succession in phytoplankton communities. We analyzed physical, chemical, and biological factors of the Maixi River in Baihua Reservoir (BHR) from August to September, 2013 (summer, phase I) and March to May, 2014 (late spring and early summer, phase II). The 226 samples collected were divided into 23 functional groups. In phase I, phytoplankton biomass ranged from 4.88 to 30.59 mg·L<sup>-1</sup>, and the group S1 (<em>Pseudanabaena limnetica</em>) had the greatest biomass. In phase II, phytoplankton biomass ranged from 2.22 to 50.61 mg·L<sup>-1</sup>, and groups Y (<em>Cryptomonas</em> sp.) and S1 (<em>P. limnetica</em>) had the greatest biomass. Dominant functional groups in the Maixi River changed from S1 + D + Y + Lo in phase I to Y + S1 in summer. Changes in the phytoplankton community varied between 0 and 0.144 day<sup>-1 </sup>in phase I and between 0.008 and 0.389 day<sup>-1 </sup>in later spring and early summer. This showed a steady-state phytoplankton community during the two phases, in which the functional groups S1 (<em>P. limnetica</em>) and Y (<em>Cryptomonas</em> sp.) were dominant.<em> Pseudanabaena limnetica</em>, <em>Synedra </em>sp., <em>Peridinium </em>sp., and<em> Cryptomonas</em> sp. were dominant during summer, contributing to 70% of the total biomass in the steady-state community, and<em> P. limnetica</em>,<em> Synedra </em>sp., <em>Cryptomonas</em> sp.,<em> </em>and <em>Chlamydomonas</em> sp. were dominant during later spring and early summer, contributing to 60% of the total biomass in the community. Groups S1, D, and Y formed easily in the Maixi River, but <em>P. limnetica</em> was the dominant species in the eutrophic conditions of the Maixi River. According to biotic and abiotic factors, we concluded that the Maixi River is hypertrophic, and water resource management should take blooms of <em>P. limnetica</em> occurring in May into account. Temperature and dissolved oxygen were the critical factors affecting the steady-state of the phytoplankton community in late spring and early summer and summer, respectively. Because the Maixi River is an important source in the BHR, its phytoplankton functional groups directly affect the ecological balance of the water environment.</p>


2021 ◽  
Vol 123 ◽  
pp. 107352
Author(s):  
Yulu Tian ◽  
Yuan Jiang ◽  
Qi Liu ◽  
Dingxue Xu ◽  
Yang Liu ◽  
...  

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 855
Author(s):  
Mikołaj Kokociński ◽  
Dariusz Dziga ◽  
Adam Antosiak ◽  
Janne Soininen

Bacterioplankton community composition has become the center of research attention in recent years. Bacteria associated with toxic cyanobacteria blooms have attracted considerable interest. However, little is known about the environmental factors driving the bacteria community, including the impact of invasive cyanobacteria. Therefore, our aim has been to determine the relationships between heterotrophic bacteria and phytoplankton community composition across 24 Polish lakes with different contributions of cyanobacteria including the invasive species Raphidiopsis raciborskii. This analysis revealed that cyanobacteria were present in 16 lakes, while R. raciborskii occurred in 14 lakes. Our results show that bacteria communities differed between lakes dominated by cyanobacteria and lakes with minor contributions of cyanobacteria but did not differ between lakes with R. raciborskii and other lakes. Physical factors, including water and Secchi depth, were the major drivers of bacteria and phytoplankton community composition. However, in lakes dominated by cyanobacteria, bacterial community composition was also influenced by biotic factors such as the amount of R. raciborskii, chlorophyll-a and total phytoplankton biomass. Thus, our study provides novel evidence on the influence of environmental factors and R. raciborskii on lake bacteria communities.


2021 ◽  
Vol 193 (11) ◽  
Author(s):  
Md. Ayenuddin Haque ◽  
Md. Abu Sayed Jewel ◽  
Most. Mahmuda Akhi ◽  
Usman Atique ◽  
Alok Kumar Paul ◽  
...  

2014 ◽  
Vol 86 (3) ◽  
pp. 1359-1372 ◽  
Author(s):  
CLARICE C. NOVA ◽  
VANESSA G. LOPES ◽  
LEONARDO COIMBRA E SOUZA ◽  
BETINA KOZLOWSKY-SUZUKI ◽  
TALITA A.A. PEREIRA ◽  
...  

Rotifers have often been used as indicators of sudden changes in physical and chemical features of the aquatic environment. Such features vary greatly during flood pulse events in small lakes connected to major floodplains. However, few are the studies that investigate the consequences of the flood pulse in rotifer species composition, abundance, richness and diversity, especially in Amazonian lakes. We analyzed samples from a small blackwater lake of an “igarapé” connected permanently to the Negro river, in Central Amazonia. Samples were taken twice a year for two years, comprising flooding and receding periods of the flood pulse. Rotifer abundance increased significantly after draught events, and electrical conductivity and turbidity were intrinsically related to such variation. Species composition also changed from flooding to receding periods. Some taxa, such as Brachionus zahniseri reductus and Lecane remanei were restricted to receding periods, while Brachionus zahniseri, Brachionus gillardi and Lecane proiecta were only present during flooding. A shift in the composition of rotifer families was observed from one period to another, showing the effect of renewing waters of the flood pulse. These results suggest that the flood pulse acts as a driving force and stressing condition, considerably altering rotifer community dynamics, either changing species composition or decreasing abundance.


Sign in / Sign up

Export Citation Format

Share Document