scholarly journals Comprehensive Drought Assessment Using a Modified Composite Drought index: A Case Study in Hubei Province, China

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 462 ◽  
Author(s):  
Si Chen ◽  
Wushuang Zhong ◽  
Shihan Pan ◽  
Qijiao Xie ◽  
Tae-Woong Kim

Under the background of global climate change, accurate monitoring and comprehensive assessment of droughts are of great practical significance to sustain agricultural development. Considering multiple causes and the complexity of the occurrence of drought, this paper employs multiple input variables, i.e., precipitation, temperature, evaporation, and surface water content to construct a modified composite drought index (MCDI) using a series of mathematical calculation methods. The derived MCDI was calculated as a multivariate drought index to measure the drought conditions and verify its accuracy in Hubei Province in China. Compared with the existing multivariate drought index, i.e., meteorological drought composite index (CI), there was a high level of correlation in monitoring drought events in Hubei Province. Moreover, according to the drought historical record, the significant drought processes monitored by the MCDI were consistent with actual drought conditions. Furthermore, temporal and spatial analysis of drought in Hubei Province was performed based on the monitoring results of the MCDI. This paper generalizes the development of the MCDI as a new method for comprehensive assessments of regional drought.

2020 ◽  
Vol 12 (11) ◽  
pp. 1700
Author(s):  
Yuanhuizi He ◽  
Fang Chen ◽  
Huicong Jia ◽  
Lei Wang ◽  
Valery G. Bondur

Droughts are one of the primary natural disasters that affect agricultural economies, as well as the fire hazards of territories. Monitoring and researching droughts is of great importance for agricultural disaster prevention and reduction. The research significance of investigating the hysteresis of agricultural to meteorological droughts is to provide an important reference for agricultural drought monitoring and early warnings. Remote sensing drought monitoring indices can be employed for rapid and accurate drought monitoring at regional scales. In this paper, the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices and the surface temperature product are used as the data sources. Calculating the temperature vegetation drought index (TVDI) and constructing a comprehensive drought disaster index (CDDI) based on the crop growth period allowed drought conditions and spatiotemporal evolution patterns in the Volgograd region in 2010 and 2012 to be effectively monitored. The causes of the drought were then analyzed based on the sensitivity of a drought to meteorological factors in rain-fed and irrigated lands. Finally, the lag time of agricultural to meteorological droughts and the hysteresis in different growth periods were analyzed using statistical analyses. The research shows that (1) the main drought patterns in 2010 were spring droughts from April to May and summer droughts from June to August, and the primary drought patterns in 2012 were spring droughts from April to June, with an affected area that reached 3.33% during the growth period; (2) local drought conditions are dominated by the average surface temperature factor. Rain-fed lands are sensitive to the temperature and are therefore prone to summer droughts. Irrigated lands are more sensitive to water shortages in the spring and less sensitive to extremely high temperature conditions; (3) there is a certain lag between meteorological and agricultural droughts during the different growth stages. The strongest lag relationship was found in the planting stage and the weakest one was found in the dormancy stage. Therefore, the meteorological drought index in the growth period has a better predictive ability for agricultural droughts during the appropriately selected growth stages.


Author(s):  
Q. Li ◽  
M. Zeng ◽  
H. Wang ◽  
P. Li ◽  
K. Wang ◽  
...  

Abstract. The Huaihe River Basin having China's highest population density (662 persons per km2) lies in a transition zone between the climates of North and South China, and is thus prone to drought. Therefore, the paper aims to develop an appropriate drought assessment approach for drought assessment in the Huaihe River basin, China. Based on the Principal Component Analysis of precipitation, evapotranspiration, soil moisture and runoff, the three latter variables of which were obtained by use of the Xin'anjiang model, a new multivariate drought index (MDI) was formulated, and its thresholds were determined by use of cumulative distribution function. The MDI, the Standardized Precipitation Index (SPI) and the self-calibrating Palmer Drought Severity Index (sc-PDSI) time series on a monthly scale were computed and compared during 1988, 1999/2000 and 2001 drought events. The results show that the MDI exhibited certain advantages over the sc-PDSI and the SPI in monitoring drought evolution. The MDI formulated by this paper could provide a scientific basis for drought mitigation and management, and references for drought assessment elsewhere in China.


2013 ◽  
Vol 448-453 ◽  
pp. 1032-1037
Author(s):  
Wenkun Liu ◽  
Yuansheng Pei ◽  
Yong Zhao ◽  
Wei Hua Xiao

The drought turns more serious in recent years, and it lacked an appropriate system to assess the regional meteorological drought. The paper took Weihe basin for example, completed the regional meteorological drought assessment by four steps. They were the drought evaluation units division, the drought index selection and calculation based on RDI (reconnaissance drought index), the drought identification and the drought characteristic values analysis based on the correlation coefficient and the copulas connect joint distribution function analysis. It discussed the interrelationship of the regional drought characteristics of area, duration, severity and frequency, and formed a relatively complete regional meteorological drought assessment system.


2021 ◽  
Vol 66 (3) ◽  
pp. 195-206
Author(s):  
Thuy Hoang Luu Thu ◽  
Mui Tran Thi ◽  
Vu Vuong Van ◽  
Ly Pham Thi ◽  
Cuc Pham Thi

Assessment of the degree of meteorological drought in Dak Lak province is carried out using the SPI index and the water balance index K in the period 1985 - 2019. The results show that: According to the SPI index, drought tends to occur more at the time of transition from the dry season to the rainy season, during the rainy season, and from the time of transition from the rainy season to the dry season. The K-index in the period 1985 - 2019 showed there was a dry period at the beginning of the year from January to April. The anomalous drought factor plays a very important role because its large influence can cause damages, and allows assessing the variability of rainfall and the impact of climate change on the region. The study and evaluation of meteorological drought have practical significance, supporting managers in making policies on water resource management, ensuring sustainable economic and social development in the context of global climate change.


2021 ◽  
Vol 21 (4) ◽  
pp. 1323-1335
Author(s):  
Zheng Liang ◽  
Xiaoling Su ◽  
Kai Feng

Abstract. Monitoring drought and mastering the laws of drought propagation are the basis for regional drought prevention and resistance. Multivariate drought indicators considering meteorological, agricultural and hydrological information may fully describe drought conditions. However, series of hydrological variables in cold and arid regions that are too short or missing make it difficult to monitor drought. This paper proposed a method combining Soil and Water Assessment Tool (SWAT) and empirical Kendall distribution function (KC′) for drought monitoring. The SWAT model, based on the principle of runoff formation, was used to simulate the hydrological variables of the drought evolution process. Three univariate drought indexes, namely meteorological drought (standardized precipitation evapotranspiration index; SPEI), agricultural drought (standardized soil moisture index; SSI) and hydrological drought (standardized streamflow drought index; SDI), were constructed using a parametric or non-parametric method to analyze the propagation time from meteorological drought to agricultural drought and hydrological drought. The KC′ was used to build a multivariable comprehensive meteorology–agriculture–hydrology drought index (MAHDI) that integrated meteorological, agricultural and hydrological drought to analyze the characteristics of a comprehensive drought evolution. The Jinta River in the inland basin of northwestern China was used as the study area. The results showed that agricultural and hydrological drought had a seasonal lag time from meteorological drought. The degree of drought in this basin was high in the northern and low in the southern regions. MAHDI proved to be acceptable in that it was consistent with historical drought records, could catch drought conditions characterized by univariate drought indexes, and capture the occurrence and end of droughts. Nevertheless, its ability to characterize mild and moderate droughts was stronger than severe droughts. In addition, the comprehensive drought conditions showed insignificant aggravating trends in spring and summer and showed insignificant alleviating trends in autumn and winter and at annual scales. The results provided theoretical support for the drought monitoring in the Jinta River basin. This method provided the possibility for drought monitoring in other watersheds lacking measured data.


2021 ◽  
Author(s):  
Uttam Singh ◽  
Pooja Agarwal ◽  
Pramod Kumar Sharma

Abstract Climate change is adversely affecting the development, management, and planning of surface and groundwater resources. The meteorological drought becomes a severe natural problem, and it can occur in any climatic region of the world. So, monitoring and minimizing drought is a crucial stage for analyzing and predicting drought impacts. A single drought index can't assess each aspect of the meteorological drought. In this study, we considered seven drought indices such as the Standardized Precipitation Index (SPI), China Z Index (CZI), Modified China Z Index (MCZI), Percent Normal drought index (PNI), Deciles Index (DI), Rainfall Anomaly Index (RAI), and Z-score index (ZSI). The drought was analyzed for 3, 6, 9, and 12 months’ time-step, and drought classification and threshold values were estimated. SPI showed maximum correlation values 0.389, 0.412, 0.560,and 0.996 for 3, 6, 9,and 12-month time steps compared to the other drought indices. The value of correlation is increased with the increase in time step for all drought indices; therefore, the accuracy of drought assessment also increases with an increase in time step. The Mann-Kendall's trend test was analyzed at a 5% level of significance for drought assessments. The drought magnitude and severity of the Betwa river basin were estimated based on the meteorological data (Rainfall) for the year between 1970 to 2014.


2017 ◽  
Author(s):  
Niko Wanders ◽  
Anne F. Van Loon ◽  
Henny A. J. Van Lanen

Abstract. Drought is an abnormal and prolonged deficit in available water. Possible drought impacts are crop losses, famine, fatalities, power blackouts and degraded ecosystems. These severe socio-economic and environmental impacts show the need to carefully monitor drought conditions using a suitable index. Our objective is to provide an intercomparison of frequently used physical drought indices to show to which degree they are interchangeable for monitoring drought in precipitation, soil moisture, groundwater and streamflow. Physical indices are commonly introduced to predict drought impacts, because appropriate drought impact indices are still missing. Correlations (R) between frequently used indices for different drought types were calculated at the global scale. We have made the index timeseries available to the community for future studies. Precipitation drought indices show low to intermediate correlations (ranging from R = 0.1 to 0.75), soil moisture drought indices show an even lower similarity (R = 0.25). Indices for streamflow drought show the highest correlation (R = 0.5 to 0.95). Additionally, meteorological drought indices do not capture the soil moisture drought correctly (R = 0.0 to 0.6) nor streamflow drought (R = 0.0 to 0.7). These findings have implications for drought monitoring systems: (i) for each drought type, a different index should carefully be identified; (ii) drought indices that are designed to monitor the same drought type show large discrepancies in their anomalies and hence drought detection; (iii) there is no single superior physical drought index that is capable of accurately capturing the diverse set of drought impacts in all parts of the hydrological cycle.


Sign in / Sign up

Export Citation Format

Share Document