scholarly journals Bottom-Up Assessment of Climate Risk and the Robustness of Proposed Flood Management Strategies in the American River, CA

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 907
Author(s):  
Kara DiFrancesco ◽  
Alix Gitelman ◽  
David Purkey

The hydrologic nonstationarity and uncertainty associated with climate change requires new decision-making methods to incorporate climate change impacts into flood frequency and flood risk analyses. To aid decision-making under climate change, we developed a bottom-up approach for assessing the performance of flood management systems under climate uncertainty and nonstationarity. The developed bottom-up approach was applied to the American River, CA, USA flood management system by first identifying the sensitivity and vulnerability of the system to different climates. To do this, we developed a climate response surface by calculating and plotting Expected Annual Damages (EAD, $/year) under different flood regimes. Next, we determined a range of plausible future climate change and flood frequency scenarios by applying Bayesian statistical methods to projected future flows derived from a Variable Infiltration Capacity (VIC) model forced with Global Circulation Model (GCM) output. We measured system robustness as the portion of plausible future scenarios under which the current flood system could meet its performance goal. Using this approach, we then evaluated the robustness of four proposed management strategies in the 2012 Central Valley Flood Protection Plan in terms of both flood risk and cost-effectiveness, to assess the performance of the strategies in the face of climate risks. Results indicated that the high sensitivity of the expected damages to changes in flood regimes makes the system extremely vulnerable to a large portion of the plausible range of future flood conditions. The management strategy that includes a combination of nature-based flood management actions along with engineered structures yields the greatest potential to increase system robustness in terms of maintaining EAD below an acceptable risk threshold. However, this strategy still leaves the system vulnerable to a wide range of plausible future conditions. As flood frequency regimes increase in intensity from the current conditions, the cost-effectiveness of the management strategies increases, to a point, before decreasing. This bottom up analysis demonstrated a viable decision-making approach for water managers in the face of uncertain and changing future conditions. Neglecting to use such an approach and omitting climate considerations from water resource planning could lead to strategies that do not perform as expected or which actually lead to mal-adaptations, increasing vulnerability to climate change.

This is the first book to treat the major examples of megadrought and societal collapse, from the late Pleistocene end of hunter–gatherer culture and origins of cultivation to the 15th century AD fall of the Khmer Empire capital at Angkor, and ranging from the Near East to South America. Previous enquiries have stressed the possible multiple and internal causes of collapse, such overpopulation, overexploitation of resources, warfare, and poor leadership and decision-making. In contrast, Megadrought and Collapse presents case studies of nine major episodes of societal collapse in which megadrought was the major and independent cause of societal collapse. In each case the most recent paleoclimatic evidence for megadroughts, multiple decades to multiple centuries in duration, is presented alongside the archaeological records for synchronous societal collapse. The megadrought data are derived from paleoclimate proxy sources (lake, marine, and glacial cores; speleothems, or cave stalagmites; and tree-rings) and are explained by researchers directly engaged in their analysis. Researchers directly responsible for them discuss the relevant current archaeological records. Two arguments are developed through these case studies. The first is that societal collapse in different time periods and regions and at levels of social complexity ranging from simple foragers to complex empires would not have occurred without megadrought. The second is that similar responses to megadrought extend across these historical episodes: societal collapse in the face of insurmountable climate change, abandonment of settlements and regions, and habitat tracking to sustainable agricultural landscapes. As we confront megadrought today, and in the likely future, Megadrought and Collapse brings together the latest contributions to our understanding of past societal responses to the crisis on an equally global and diverse scale.


2021 ◽  
Vol 13 (1) ◽  
pp. 1616-1642
Author(s):  
Sai Kiran Kuntla

Abstract The repetitive and destructive nature of floods across the globe causes significant economic damage, loss of human lives, and leaves the people living in flood-prone areas with fear and insecurity. With enough literature projecting an increase in flood frequency, severity, and magnitude in the future, there is a clear need for effective flood management strategies and timely implementation. The earth observatory satellites of the European Space Agency’s Sentinel series, Sentinel-1, Sentinel-2, and Sentinel-3, have a great potential to combat these disastrous floods by their peerless surveillance capabilities that could assist in various phases of flood management. In this article, the technical specifications and operations of the microwave synthetic aperture radar (SAR) onboard Sentinel-1, optical sensors onboard Sentinel-2 (Multispectral Instrument) and Sentinel-3 (Ocean and Land Color Instrument), and SAR altimeter onboard Sentinel-3 are described. Moreover, the observational capabilities of these three satellites and how these observations can meet the needs of researchers and flood disaster managers are discussed in detail. Furthermore, we reviewed how these satellites carrying a range of technologies that provide a broad spectrum of earth observations stand out among their predecessors and have bought a step-change in flood monitoring, understanding, and management to mitigate their adverse effects. Finally, the study is concluded by highlighting the revolution this fleet of Sentinel satellites has brought in the flood management studies and applications.


2021 ◽  
pp. 162-178
Author(s):  
Cynthia Rayner ◽  
François Bonnici

This book asks a rather simple but bold question: “How do organizations create systemic social change?” This question is growing in importance, becoming part of the strategic conversation for all types of organizations, not just those specifically focused on social change. Business leaders, politicians, educators, employees, and parents are grappling with the realization that complex social change can rapidly impact their everyday lives. As frustration at the slow pace of change grows, and the world’s wicked problems—such as inequality, climate change and racial justice—proliferate, people are increasingly recognizing that we need to find ways to tackle the root causes of these issues rather than just addressing the symptoms. In the face of these challenges, it is easy to default to our more traditional views of leadership and problem-solving, which celebrate an us-versus-them mentality, top-down decision-making, and aggressive power stances. Systems work—with its focus on the process of change including our day-to-day actions and relationships—may feel counterintuitive in this rapidly emerging future. Yet, as the authors’ research has shown, the future is demanding a different kind of leadership, one that emphasizes the ways we work as much as the outcomes we pursue.


Author(s):  
P. E. Perkins ◽  
B. Osman

Abstract This chapter explores the livelihood and care implications of the climate crisis from a gendered viewpoint that includes the implications of this approach for climate decision making at multiple scales, from local to global. The focus is on grassroots political organizing, activism, and movements as well as women's community-based actions to (re)build social resilience in the face of climate chaos. Challenges and policy implications are discussed as governments struggle to meaningfully and equitably address climate change. Also highlighted are the transformational imperatives of care and livelihood priorities which cast into stark relief the unsustainability of the long-established gender inequities that serve as the foundation for economic systems everywhere.


Hydrology ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 39 ◽  
Author(s):  
Iguniwari Thomas Ekeu-wei ◽  
George Alan Blackburn

Flood modelling and mapping typically entail flood frequency estimation, hydrodynamic modelling and inundation mapping, which require specific datasets that are often unavailable in developing regions due to financial, logistical, technical and organizational challenges. This review discusses fluvial (river) flood modelling and mapping processes and outlines the data requirements of these techniques. This paper explores how open-access remotely sensed and other geospatial datasets can supplement ground-based data and high-resolution commercial satellite imagery in data sparse regions of developing countries. The merits, demerits and uncertainties associated with the application of these datasets, including radar altimetry, digital elevation models, optical and radar images, are discussed. Nigeria, located within the Niger river basin of West Africa is a typical data-sparse country, and it is used as a case study in this review to evaluate the significance of open-access datasets for local and transboundary flood analysis. Hence, this review highlights the vital contribution that open access remotely sensed data can make to flood modelling and mapping and to support flood management strategies in developing regions.


2014 ◽  
Vol 45 (6) ◽  
pp. 774-787 ◽  
Author(s):  
Oana Iacob ◽  
John S. Rowan ◽  
Iain Brown ◽  
Chris Ellis

Climate change is projected to alter river flows and the magnitude/frequency characteristics of floods and droughts. Ecosystem-based adaptation highlights the interdependence of human and natural systems, and the potential to buffer the impacts of climate change by maintaining functioning ecosystems that continue to provide multiple societal benefits. Natural flood management (NFM), emphasising the restoration of innate hydrological pathways, provides important regulating services in relation to both runoff rates and water quality and is heralded as a potentially important climate change adaptation strategy. This paper draws together 25 NFM schemes, providing a meta-analysis of hydrological performance along with a wider consideration of their net (dis) benefits. Increasing woodland coverage, whilst positively linked to peak flow reduction (more pronounced for low magnitude events), biodiversity and carbon storage, can adversely impact other provisioning service – especially food production. Similarly, reversing historical land drainage operations appears to have mixed impacts on flood alleviation, carbon sequestration and water quality depending on landscape setting and local catchment characteristics. Wetlands and floodplain restoration strategies typically have fewer disbenefits and provide improvements for regulating and supporting services. It is concluded that future NFM proposals should be framed as ecosystem-based assessments, with trade-offs considered on a case-by-case basis.


2019 ◽  
Vol 11 (18) ◽  
pp. 5053 ◽  
Author(s):  
Fatemeh Fadia Maghsood ◽  
Hamidreza Moradi ◽  
Ronny Berndtsson ◽  
Mostafa Panahi ◽  
Alireza Daneshi ◽  
...  

Floods are natural hazards with serious impact on many aspects of human life. The Intergovernmental Panel on Climate Change (IPCC) reported that climate change already has significant impact on magnitude and frequency of flood events worldwide. Thus, it is suggested to adopt strategies to manage damage impacts of climate change. For this, involving the local community in the decision-making process, as well as experts and decision-makers, is essential. We focused on assessing the social acceptability of flood management strategies under climate change through a socio-hydrological approach using the Contingent Valuation Method (CVM). For this purpose as well, hydro-climate modelling and the Analytical Network Process (ANP) were used. Among twelve investigated flood management strategies, “river restoration”, “agricultural management and planning”, and “watershed management” were the publicly most accepted strategies. Assessment of the social acceptability of these three strategies was carried out by use of the CVM and Willingness to Pay (WTP) methodology. Generally, 50%, 38%, and 18% were willing to pay and 44%, 48%, and 52% were willing to contribute flood management strategy in zones 1, 2, and 3, respectively. Overall, peoples’ WTP for flood management strategies decreased with increasing distance from the river. Among different investigated dependent variables, household income had the highest influence on WTP.


2002 ◽  
Vol 45 (8) ◽  
pp. 183-190 ◽  
Author(s):  
Arne Tollan

Land-cover change (urbanisation, deforestation, and cultivation) results in increased flood frequency and severity. Mechanisms include reduced infiltration capacity, lower soil porosity, loss of vegetation, and forest clearing, meaning lower evapotranspiration. Major research challenges lie in quantification of effects in terms of flood characteristics under various conditions, ascertaining the combined effects of gradual changes over long time periods, and developing model tools suitable for land-use management. Large floods during the 1990s gave a new focus on these problems. Reference is made to the Norwegian HYDRA research programme on human impacts on floods and flood damage. The paper concludes that land-use change effects on floods are most pronounced at small scale and for frequent flood magnitudes. Model simulations of effects of land-use change can now be used to reduce flood risk. Modern flood management strategies have abandoned the position that dams and dikes are the only answers to mitigating flood disasters. Today, the strategic approach is more often: do not keep the water away from the people, keep people away from the water. Flood management strategies should include flood warnings, efficient communication, risk awareness, civil protection and flood preparedness routines, effective land-use policies, flood risk mapping, … as well as structural measures.


Sign in / Sign up

Export Citation Format

Share Document