scholarly journals Securing Access to Drinking Water in North-Eastern Morocco: The Example of the Taourirt-Oujda Corridor

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 928
Author(s):  
Halima Jounaid ◽  
Taha Attou ◽  
Toufik Remmal ◽  
Aimad Bouaziz

Taourit-Oujda corridor (T.O.C.) is a geological entity of north-eastern Morocco with a total area of 4000 Km2. The drinking water supply in this arid region still faces challenges that meet a growing demand for a shortage of fresh water. This shortage is mainly due to the scarcity and irregularity of the precipitations, the overexploitation of the water resources, and the decrease of the capacity of storage dams that are the main source of drinking water supply in this area. This work aims at estimating deficit (to 2040) for drinking water provided by Machraa Hammadi dam and proposing favourable drilling sites to strengthen drinking water supply through the identification of groundwater resources that can be used in quantity and quality. To do this, a multi-criteria analysis (MCA) covering geological, hydrogeological and hydro-chemical aspects using the Geographical Information System (GIS) was carried out. This study shows that T.O.C. aquifer is more productive in the south-west of it, in the centre near the El Aioun municipality and in the north-east at the town of Sidi Bouhouria. According to Moroccan standards, defining the quality norms of surface waters, waters destined for irrigation, and of surface waters used for the production of drinking water, the groundwater in the center and north-east areas is also with good to medium overall quality groundwater.

2018 ◽  
Vol 170 ◽  
pp. 04003 ◽  
Author(s):  
Svetlana Fedorova ◽  
Anatolii Kryzhanovsky

The urgency of the conducted studies is dictated by the problem of Urban Territories’ sub-surface waters purification providing in the Republic of Sakha (Yakutia) population with drinking water, which can be partly solved by involving the sub-surface waters of the Yakutian artesian basin in the domestic and drinking water supply systems. The chemical composition feature of the under-ground waters under consideration, which substantially complicates their widespread use for domestic and drinking purposes, is the increased content of lithium, fluorine and sodium. The main research objective is to develop an effective method for clearing the sub-permafrost waters of the Yakutian artesian basin from lithium compounds, which can be used in water treatment systems for domestic and drinking purposes. As a result of the experimental studies on the sub-permafrost water purification of casting by the ion exchange method, its content reduced from 0.5 to 0.01 mg / l, which fully met the requirements for drinking water. On the basis of the results obtained, a comprehensive scheme for the sub-permafrost waters purification of the Yakutian artesian basin from lithium, fluorine and sodium was developed for the purpose of household and drinking water supply.


2016 ◽  
Vol 30 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Samia Benrabah ◽  
Badra Attoui ◽  
Mani Hannouche

AbstractIn spite of the abundance of water resources in the watershed of Khenchela region, the strong urban growth and the expansion of agricultural land resulted in a considerable increase in water needs. This fact exposed groundwater and surface vulnerability to an overlooked growing pollution.In this vein, this study aims to determine the global quality of groundwater oriented to drinking water supply in Khenchela city. It focuses particularly on looking for minerals, nutrients and salt concentration and to assess their spatial and temporal variability. This area has been the subject of several previous studies due to the importance of its watershed (hydrology, geology, geomorphology, bacteriology...). The dosage of the considered parameters revealed vulnerability of water of the North and the North Western part of the watershed to the strong mineralization and excess of organic minerals. This requires in the short term an obligation to treat this water before distribution. A permanent monitoring and the use of other evaluation means for quality protection of this vulnerable resource have been taken into account.


Author(s):  
Sara Soares ◽  
Daniela Terêncio ◽  
Luís Fernandes ◽  
João Machado ◽  
Fernando Pacheco

The drinking water supply to Vila Pouca de Aguiar municipality in North Portugal is based on high quality groundwater, namely on nearly one hundred artesian springs and fifty boreholes. The groundwater resources are plentiful on a municipal level, but evidence some deficits at the sub-municipal (village) level, especially during the dry period (July- August) that coincides with the return of many emigrants for holiday time. The deficits affect mostly the municipal capital (Vila Pouca de Aguiar) and a neighboring village (Pedras Salgadas), which populations nearly double or even triple during that period. The estimated annual deficits approach 55,000 m3/yr in those villages. If the anticipated increase in consumption/habitant and decrease in annual rainfall become reality in the next two decades, then the deficits may raise to approximately 90,000 m3/yr. To balance the water supply system, this study proposes its transition towards a conjunctive water management based on surface water stored in small dams and groundwater. A hydrologic modeling involving small forested catchments (< 15 km2) elected the Cabouço watershed as most suited basin to store stream water, because surface water availability is large (2.4 Mm3/yr) and forest cover is dominant (84.8%). Estimated nutrient loads are also compatible with drinking water supply.


2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Jing Li ◽  
Linda Parkefelt ◽  
Kenneth M Persson ◽  
Heidi Pekar

Cyanobacteria in fresh water can cause serious threats to drinking water supplies. Managing cyanobacterial blooms particularly at small drinking water treatment plants is challenging. Because large amount of cyanobacteria may cause clogging in the treatment process and various cyanotoxins are hard to remove, while they may cause severe health problems. There is lack of instructions of what cyanobacteria/toxin amount should trigger what kind of actions for drink-ing water management except for Microcystins. This demands a Cyanobacteria Management Tool (CMT) to help regula-tors/operators to improve cyanobacteria/cyanotoxin monitoring in surface waters for drinking water supply. This project proposes a CMT tool, including selecting proper indicators for quick cyanobacteria monitoring and verifying quick analysis methods for cyanobacteria and cyanotoxin. This tool is suggested for raw water management regarding cyano-bacteria monitoring in lakes, especially in boreal forest climate. In addition, it applies to regions that apply international WHO standards for water management. In Swedish context, drinking water producers which use raw water from lakes that experience cyanobacterial blooms, need to create a monitoring routine for cyanobacteria/cyanotoxin and to monitor beyond such as Anatoxins, Cylindrospermopsins and Saxitoxins. Using the proposed CMT tool will increase water safety at surface water treatment plants substantially by introducing three alerting points for actions. CMT design for each local condition should integrate adaptive monitoring program.


2015 ◽  
Vol 14 (2) ◽  
pp. 325-339
Author(s):  
M. F. El-Shahat ◽  
M. A. Sadek ◽  
W. M. Mostafa ◽  
K. H. Hagagg

The present investigation has been conducted to delineate the hydrogeochemical and environmental factors that control the water quality of the groundwater resources in the north-east of Cairo. A complementary approach based on hydrogeochemistry and a geographical information system (GIS) based protectability index has been employed for conducting this work. The results from the chemical analysis revealed that the groundwater of the Quaternary aquifer is less saline than that of the Miocene aquifer and the main factors that control the groundwater salinity in the studied area are primarily related to the genesis of the original recharging water modified after by leaching, dissolution, cation exchange, and fertilizer leachate. The computed groundwater quality index (WQI) falls into two categories: fair for almost all the Miocene groundwater samples, while the Quaternary groundwater samples are all have a good quality. The retarded flow and non-replenishment of the Miocene aquifer compared to the renewable active recharge of the Quaternary aquifer can explain this variation of WQI. The index and overlay approach exemplified by the DUPIT index has been used to investigate the protectability of the study aquifers against diffuse pollutants. Three categories (highly protectable less vulnerable, moderately protectable moderately vulnerable and less protectable highly vulnerable) have been determined and areally mapped.


2014 ◽  
Vol 4 (1) ◽  
pp. 100-107 ◽  
Author(s):  
Abu Hena Mustafa Kamal Sikder ◽  
Mashfiqus Salehin

Availability of safe drinking water is considered a key challenge in the coastal region of Bangladesh. High concentrations of salinity, iron and arsenic, and the unavailability of suitable aquifers, have deterred the exploitation of groundwater resources. In addition the cyclonic storm surge is a major threat to this system. Cyclones accompanied by storm surges in the coastal area cause significant deterioration of drinking water supply and sanitation. Water professionals have launched some initiatives to promote small-scale, alternative safe water sources (e.g. rainwater harvesting, pond sand filters and piped water techniques) to provide sustainable solutions to the problem. However, a systematic evaluation of the alternatives that considers social, technical and economic criteria has not been carried out so far. The present study is an attempt to evaluate the alternative options for drinking water supply in a cyclone-prone area. The authors conducted a multi-criteria analysis and reached the conclusion that rainwater harvesting is the most suitable option for the area. Moreover, the final result was shared with the users to obtain their feedback to ensure sustainability of the water source.


2019 ◽  
Vol 31 (1) ◽  
pp. 75-83
Author(s):  
Surindar Wawale

Abstract There is growing interest in the research community to apply the various techniques pertaining to geospatial technology, with the advance part of Remote Sensing (RS) and Geographical Information System (GIS). This technology has been proven to be very essential in this identification and resolving the problem of water resource and allied water supply management. Considering the capabilities of geospatial techniques, the tools and techniques of similar disciplines used for gravity-based drinking water supply management in the hilly area where the human habitat is settled at foothill places. An attempt has been made in this paper to avail the use of tools and techniques of geospatial techniques for gravity-based water supply management at the village level. The Karule village is the part of central Maharashtra in India chosen for implementation of present bid. It was observed that, three-dimensional remote sensing data derived from space-borne satellite could be useful for gravity-based drinking water supply management with the help of other spatial and non-spatial database. Satellite-derived data and its incorporation with GIS and ground inventory data would be advantageous for delineation of such gravity-based water supply management in the similar area of the world.


Sign in / Sign up

Export Citation Format

Share Document