scholarly journals Feeding the Building Plumbing Microbiome: The Importance of Synthetic Polymeric Materials for Biofilm Formation and Management

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1774 ◽  
Author(s):  
Lisa Neu ◽  
Frederik Hammes

The environmental conditions in building plumbing systems differ considerably from the larger distribution system and, as a consequence, uncontrolled changes in the drinking water microbiome through selective growth can occur. In this regard, synthetic polymeric plumbing materials are of particular relevance, since they leach assimilable organic carbon that can be utilized for bacterial growth. Here, we discuss the complexity of building plumbing in relation to microbial ecology, especially in the context of low-quality synthetic polymeric materials (i.e., plastics) and highlight the major knowledge gaps in the field. We furthermore show how knowledge on the interaction between material properties (e.g., carbon migration) and microbiology (e.g., growth rate) allows for the quantification of initial biofilm development in buildings. Hence, research towards a comprehensive understanding of these processes and interactions will enable the implementation of knowledge-based management strategies. We argue that the exclusive use of high-quality materials in new building plumbing systems poses a straightforward strategy towards managing the building plumbing microbiome. This can be achieved through comprehensive material testing and knowledge sharing between all stakeholders including architects, planners, plumbers, material producers, home owners, and scientists.

2020 ◽  
Author(s):  
Neu Lisa ◽  
Cossu Laura ◽  
Frederik Hammes

AbstractUpon entering building plumbing systems, drinking water bacteria experience considerable changes in environmental conditions. For example, some flexible polymeric materials leach organic carbon, which increases bacterial growth and reduces diversity. Here we show that the carbon supply by a flexible polymeric material drives nutrient-based selection within establishing biofilm communities. We found that migrating carbon from EPDM coupons resulted in considerable growth for different drinking water communities (0.2 – 3.3 × 108 cells/cm2). All established biofilm communities showed low diversity (29 – 50 taxa/biofilm), with communities dominated by even viewer taxa (e.g., 5 taxa accounting for 94 ± 5 % relative abundance, n = 15). Interestingly, biofilm communities shared some taxa (e.g., Methylobacterium spp.) and families (e.g., Comamonadaceae), despite the difference in starting communities. Moreover, selected biofilm communities performed better than their original communities regarding maximum attachment (91 ± 5 vs. 69 ± 23 %, n = 15) and attachment rate (5.0 ± 1.7 × 104 vs. 2.4 ± 1.2 × 104 cells/cm2/h, n = 15) when exposed to new EPDM coupons. Our results demonstrate nutrient-based selection during initial biofilm formation on a flexible polymeric material and a resulting benefit to selected communities. We anticipate our findings to help connecting observational microbiological findings with their underlying ecological principles. Regarding initial biofilm formation, attachment dynamics, growth, and selection thereof are important for the management of microbial communities. In fact, managing initial colonization by supplying specific carbon and/or introducing consciously chosen/designed communities potentially paves the way for a probiotic approach for building plumbing materials.


2017 ◽  
Vol 15 (6) ◽  
pp. 942-954 ◽  
Author(s):  
Parul Gulati ◽  
Moushumi Ghosh

Sphingomonas paucimobilis, an oligotroph, is well recognized for its potential for biofilm formation. The present study explored the biofilm forming ability of a strain isolated from municipal drinking water on plumbing materials. The intensity of biofilm formation of this strain on different plumbing materials was examined by using 1 × 1 cm2 pieces of six different pipe materials, i.e. polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), aluminium (Al), copper (Cu) and rubber (R) and observing by staining with the chemical chromophore, Calcofluor. To understand whether biofilm formation occurs under flow through conditions, a laboratory-scale simulated distribution system, comprised of the above materials was fabricated. Biofilm samples were collected from the designed system at different biofilm ages (10, 40 and 90 hours old) and enumerated. The results indicated that the biofilm formation occurred on all plumbing materials with Cu and R as exceptions. The intensity of biofilm formation was found to be maximum on PVC followed by PP and PE. We also demonstrated the chemical chromophore (Calcofluor) successfully for rapid and easy visual detection of biofilms, validated by scanning electron microscope (SEM) analysis of the plumbing materials. Chlorination has little effect in preventing biofilm development.


2014 ◽  
Vol 60 (1) ◽  
pp. 5-14 ◽  
Author(s):  
Gang Zhou ◽  
Long-jie Li ◽  
Qing-shan Shi ◽  
You-sheng Ouyang ◽  
Yi-ben Chen ◽  
...  

Enterobacter cloacae is a nosocomial pathogen. The E. cloacae strain BF-17, with a high capacity for biofilm formation, was screened and identified from industrially contaminated samples, carried out in our laboratory. To develop an efficient strategy to deal with biofilms, we investigated the effects of metal ions, including Na+, K+, Ca2+, Mg2+, Cu2+, and Mn2+, and 3 isothiazolones, on elimination of E. cloacae BF-17 biofilm formation by using a 0.1% crystal violet staining method. The results revealed that higher concentrations of Na+ or K+ significantly inhibited E. cloacae BF-17 biofilm development. Meanwhile, Ca2+ and Mn2+ stimulated biofilm formation at low concentration but exhibited a negative effect at high concentration. Moreover, biofilm formation decreased with increasing concentration of Mg2+ and Cu2+. The isothiazolones Kathon (14%), 1,2-benzisothiazolin-3-one (11%), and 2-methyl-4-isothiazolin-3-one (10%) stimulated initial biofilm formation but not planktonic growth at low concentrations and displayed inhibitory effects on both biofilm formation and planktonic growth at higher concentrations. Unfortunately, the 3 isothiazolones exerted negligible effects on preformed or fully mature biofilms. Our findings suggest that Na+, K+, Mg2+, and isothiazolones could be used to prevent and eliminate E. cloacae BF-17 biofilms.


2011 ◽  
Vol 356-360 ◽  
pp. 2791-2795
Author(s):  
Meng Hui Wang ◽  
Lu Chen ◽  
Rui Bao Jia ◽  
Xu Lian ◽  
Li Li

A biofilm based method was used to measure the biological regrowth potential of water by a biofilm annular reactor. The tested water was taken from the city distribution system at the lower reaches of Yellow River. Bacterial growth data, including biofilm and suspended bacteria in water, were collected during the month-long study and compared with turbidity and the traditional biodegradable organic material measuring method, namely, assimilable organic carbon (AOC) method. The change trends of biofilm biomass, heterotrophic plate counting of suspended bacteria (HPCs), turbidity and AOC were discussed and the correlation between these indicators were analyzed in this study. Results of this study indicated that comprehensively quantitative biostability factors should take into account both biodegradable organic material and biofilm formation capability of tested water.


Author(s):  
Kevin D. Mlynek ◽  
Christopher T. Lopez ◽  
David P. Fetterer ◽  
Janice A. Williams ◽  
Joel A. Bozue

Biofilms have been established as an important lifestyle for bacteria in nature as these structured communities often enable survivability and persistence in a multitude of environments. Francisella tularensis is a facultative intracellular Gram-negative bacterium found throughout much of the northern hemisphere. However, biofilm formation remains understudied and poorly understood in F. tularensis as non-substantial biofilms are typically observed in vitro by the clinically relevant subspecies F. tularensis subsp. tularensis and F. tularensis subsp. holarctica (Type A and B, respectively). Herein, we report conditions under which robust biofilm development was observed in a stochastic, but reproducible manner in Type A and B isolates. The frequency at which biofilm was observed increased temporally and appeared switch-like as progeny from the initial biofilm quickly formed biofilm in a predictable manner regardless of time or propagation with fresh media. The Type B isolates used for this study were found to more readily switch on biofilm formation than Type A isolates. Additionally, pH was found to function as an environmental checkpoint for biofilm initiation independently of the heritable cellular switch. Multiple colony morphologies were observed in biofilm positive cultures leading to the identification of a particular subset of grey variants that constitutively produce biofilm. Further, we found that constitutive biofilm forming isolates delay the onset of a viable non-culturable state. In this study, we demonstrate that a robust biofilm can be developed by clinically relevant F. tularensis isolates, provide a mechanism for biofilm initiation and examine the potential role of biofilm formation.


1989 ◽  
Vol 21 (4-5) ◽  
pp. 157-165 ◽  
Author(s):  
F. Ehlinger ◽  
J. M. Audic ◽  
G. M. Faup

The characterization of the biofilm of an anaerobic fluidized-bed reactor was completed under standard conditions. The distribution of the fixed protein concentration depended on the level in the reactor. The protein concentration reached 1520 µg.g−1 of support at the top of the reactor and only 1200 µg.g−1 at the bottom after 504 hours of operation but the specific activity of the biofilm was 33×10−4 µM acetate.h−1.mg−1 proteins at the bottom and only 26×10−4 µM.h−1.mg−1 at the top. The efficiency of a fluidized bed reactor and the composition of the biofilm changed with an increase of the pH from 7 to 8.5 during the seeding of the support material. Future development of the biofilm and the specific activity of the support were affected.


2021 ◽  
Vol 22 (3) ◽  
pp. 1060
Author(s):  
Erik Gerner ◽  
Sofia Almqvist ◽  
Peter Thomsen ◽  
Maria Werthén ◽  
Margarita Trobos

Hard-to-heal wounds are typically infected with biofilm-producing microorganisms, such as Pseudomonas aeruginosa, which strongly contribute to delayed healing. Due to the global challenge of antimicrobial resistance, alternative treatment strategies are needed. Here, we investigated whether inhibition of quorum sensing (QS) by sodium salicylate in different P. aeruginosa strains (QS-competent, QS-mutant, and chronic wound strains) influences biofilm formation and tolerance to silver. Biofilm formation was evaluated in simulated serum-containing wound fluid in the presence or absence of sodium salicylate (NaSa). Biofilms were established using a 3D collagen-based biofilm model, collagen coated glass, and the Calgary biofilm device. Furthermore, the susceptibility of 48-h-old biofilms formed by laboratory and clinical strains in the presence or absence of NaSa towards silver was evaluated by assessing cell viability. Biofilms formed in the presence of NaSa were more susceptible to silver and contained reduced levels of virulence factors associated with biofilm development than those formed in the absence of NaSa. Biofilm aggregates formed by the wild-type but not the QS mutant strain, were smaller and less heterogenous in size when grown in cultures with NaSa compared to control. These data suggest that NaSa, via a reduction of cell aggregation in biofilms, allows the antiseptic to become more readily available to cells.


2014 ◽  
Vol 17 (2) ◽  
pp. 321-329 ◽  
Author(s):  
K. Wolska ◽  
P. Szweda ◽  
K. Lada ◽  
E. Rytel ◽  
K. Gucwa ◽  
...  

AbstractThe molecular-typing strategy, ERIC-PCR was used in an attempt to determine the genomic relationship of 28 P. aeruginosa strains isolated from faeces of healthy bovine, bovine mastitis and from faeces of hospital patients as well as from environment. ERIC-PCR fingerprinting revealed large molecular differentiation within this group of isolates. Twenty two out of 28 strains tested generated unique patterns of DNA bands and only three genotypes consisted of two isolates each were identified. We also tested the P. aeruginosa isolates for their ability to form a biofilm on abiotic surfaces including polyvinylchloride and polystyrene. Different biofilm-forming abilities were demonstrated among strains; however, most of them (64.3%) showed moderate-biofilm forming ability. The strains with increased swimming and twitching motility displayed elevated biofilm formation. However, a negative correlation was found between slime and initial biofilm production. On the basis of the results obtained, we suggest that there are no major differences in phenotypic properties between P. aeruginosa strains isolated from different sources


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 172
Author(s):  
Sunny Katyara ◽  
Muhammad Fawad Shaikh ◽  
Shoaib Shaikh ◽  
Zahid Hussain Khand ◽  
Lukasz Staszewski ◽  
...  

With the rising load demand and power losses, the equipment in the utility network often operates close to its marginal limits, creating a dire need for the installation of new Distributed Generators (DGs). Their proper placement is one of the prerequisites for fully achieving the benefits; otherwise, this may result in the worsening of their performance. This could even lead to further deterioration if an effective Energy Management System (EMS) is not installed. Firstly, addressing these issues, this research exploits a Genetic Algorithm (GA) for the proper placement of new DGs in a distribution system. This approach is based on the system losses, voltage profiles, and phase angle jump variations. Secondly, the energy management models are designed using a fuzzy inference system. The models are then analyzed under heavy loading and fault conditions. This research is conducted on a six bus radial test system in a simulated environment together with a real-time Power Hardware-In-the-Loop (PHIL) setup. It is concluded that the optimal placement of a 3.33 MVA synchronous DG is near the load center, and the robustness of the proposed EMS is proven by mitigating the distinct contingencies within the approximately 2.5 cycles of the operating period.


2019 ◽  
Vol 98 (7) ◽  
pp. 739-745 ◽  
Author(s):  
C. Cugini ◽  
M. Shanmugam ◽  
N. Landge ◽  
N. Ramasubbu

The oral cavity contains a rich consortium of exopolysaccharide-producing microbes. These extracellular polysaccharides comprise a major component of the oral biofilm. Together with extracellular proteins, DNA, and lipids, they form the biofilm matrix, which contributes to bacterial colonization, biofilm formation and maintenance, and pathogenesis. While a number of oral microbes have been studied in detail with regard to biofilm formation and pathogenesis, the exopolysaccharides have been well characterized for only select organisms, namely Streptococcus mutans and Aggregatibacter actinomycetemcomitans. Studies on the exopolysaccharides of other oral organisms, however, are in their infancy. In this review, we present the current research on exopolysaccharides of oral microbes regarding their biosynthesis, regulation, contributions to biofilm formation and stability of the matrix, and immune evasion. In addition, insight into the role of exopolysaccharides in biofilms is highlighted through the evaluation of emerging techniques such as pH probing of biofilm colonies, solid-state nuclear magnetic resonance for macromolecular interactions within biofilms, and super-resolution microscopy analysis of biofilm development. Finally, exopolysaccharide as a potential nutrient source for species within a biofilm is discussed.


Sign in / Sign up

Export Citation Format

Share Document