scholarly journals A Simple Time-Varying Sensitivity Analysis (TVSA) for Assessment of Temporal Variability of Hydrological Processes

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2463 ◽  
Author(s):  
Yelena Medina ◽  
Enrique Muñoz

Time-varying sensitivity analysis (TVSA) allows sensitivity in a moving window to be estimated and the time periods in which the specific components of a model can affect its performance to be identified. However, one of the disadvantages of TVSA is its high computational cost, as it estimates sensitivity in a moving window within an analyzed series, performing a series of repetitive calculations. In this article a function to implement a simple TVSA with a low computational cost using regional sensitivity analysis is presented. As an example of its application, an analysis of hydrological model results in daily, monthly, and annual time windows is carried out. The results show that the model allows the time sensitivity of a model with respect to its parameters to be detected, making it a suitable tool for the assessment of temporal variability of processes in models that include time series analysis. In addition, it is observed that the size of the moving window can influence the estimated sensitivity; therefore, analysis of different time windows is recommended.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4045 ◽  
Author(s):  
Wesllen Sousa Lima ◽  
Hendrio de Souza Bragança ◽  
Kevin Montero Quispe ◽  
Eduardo Pereira Souto

Mobile sensing has allowed the emergence of a variety of solutions related to the monitoring and recognition of human activities (HAR). Such solutions have been implemented in smartphones for the purpose of better understanding human behavior. However, such solutions still suffer from the limitations of the computing resources found on smartphones. In this sense, the HAR area has focused on the development of solutions of low computational cost. In general, the strategies used in the solutions are based on shallow and deep learning algorithms. The problem is that not all of these strategies are feasible for implementation in smartphones due to the high computational cost required, mainly, by the steps of data preparation and the training of classification models. In this context, this article evaluates a new set of alternative strategies based on Symbolic Aggregate Approximation (SAX) and Symbolic Fourier Approximation (SFA) algorithms with the purpose of developing solutions with low computational cost in terms of memory and processing. In addition, this article also evaluates some classification algorithms adapted to manipulate symbolic data, such as SAX-VSM, BOSS, BOSS-VS and WEASEL. Experiments were performed on the UCI-HAR, SHOAIB and WISDM databases commonly used in the literature to validate HAR solutions based on smartphones. The results show that the symbolic representation algorithms are faster in the feature extraction phase, on average, by 84.81%, and reduce the consumption of memory space, on average, by 94.48%, and they have accuracy rates equivalent to conventional algorithms.


Author(s):  
Anh Tran ◽  
Yan Wang ◽  
John Furlan ◽  
Krishnan V. Pagalthivarthi ◽  
Mohamed Garman ◽  
...  

Abstract Dedicated to the memory of John Furlan. Wear prediction is important in designing reliable machinery for slurry industry. It usually relies on multi-phase computational fluid dynamics, which is accurate but computationally expensive. Each run of the simulations can take hours or days even on a high-performance computing platform. The high computational cost prohibits a large number of simulations in the process of design optimization. In contrast to physics-based simulations, data-driven approaches such as machine learning are capable of providing accurate wear predictions at a small fraction of computational costs, if the models are trained properly. In this paper, a recently developed WearGP framework [1] is extended to predict the global wear quantities of interest by constructing Gaussian process surrogates. The effects of different operating conditions are investigated. The advantages of the WearGP framework are demonstrated by its high accuracy and low computational cost in predicting wear rates.


2020 ◽  
Author(s):  
Samuel O. Silva ◽  
Bruno O. Goulart ◽  
Maria Júlia M. Schettini ◽  
Carolina Xavier ◽  
João Gabriel Silva

The use of modeling and application of complex networks in several areas of knowledge have become an important tool for understanding different phenomena; among them some related to the structures and dissemination of information on social medias. In this sense, the use of a network's vertex ranking can be applied in the detection of influential nodes and possible foci of information diffusion. However, calculating the position of the vertices in some of these rankings may require a high computational cost. This paper presents a comparative study between six ranking metrics applied in different social medias. This comparison is made using the rank correlation coefficients. In addition, a study is presented on the computational time spent by each ranking. Results show that the Grau ranking metric has a greater correlation with other metrics and has low computational cost in its execution, making it an efficient indication in detecting influential nodes when there is a short term for the development of this activity.


2012 ◽  
Vol 2 (1) ◽  
pp. 7-9 ◽  
Author(s):  
Satinderjit Singh

Median filtering is a commonly used technique in image processing. The main problem of the median filter is its high computational cost (for sorting N pixels, the temporal complexity is O(N·log N), even with the most efficient sorting algorithms). When the median filter must be carried out in real time, the software implementation in general-purpose processorsdoes not usually give good results. This Paper presents an efficient algorithm for median filtering with a 3x3 filter kernel with only about 9 comparisons per pixel using spatial coherence between neighboring filter computations. The basic algorithm calculates two medians in one step and reuses sorted slices of three vertical neighboring pixels. An extension of this algorithm for 2D spatial coherence is also examined, which calculates four medians per step.


1995 ◽  
Vol 32 (2) ◽  
pp. 95-103
Author(s):  
José A. Revilla ◽  
Kalin N. Koev ◽  
Rafael Díaz ◽  
César Álvarez ◽  
Antonio Roldán

One factor in determining the transport capacity of coastal interceptors in Combined Sewer Systems (CSS) is the reduction of Dissolved Oxygen (DO) in coastal waters originating from the overflows. The study of the evolution of DO in coastal zones is complex. The high computational cost of using mathematical models discriminates against the required probabilistic analysis being undertaken. Alternative methods, based on such mathematical modelling, employed in a limited number of cases, are therefore needed. In this paper two alternative methods are presented for the study of oxygen deficit resulting from overflows of CSS. In the first, statistical analyses focus on the causes of the deficit (the volume discharged). The second concentrates on the effects (the concentrations of oxygen in the sea). Both methods have been applied in a study of the coastal interceptor at Pasajes Estuary (Guipúzcoa, Spain) with similar results.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 891
Author(s):  
Aurea Grané ◽  
Alpha A. Sow-Barry

This work provides a procedure with which to construct and visualize profiles, i.e., groups of individuals with similar characteristics, for weighted and mixed data by combining two classical multivariate techniques, multidimensional scaling (MDS) and the k-prototypes clustering algorithm. The well-known drawback of classical MDS in large datasets is circumvented by selecting a small random sample of the dataset, whose individuals are clustered by means of an adapted version of the k-prototypes algorithm and mapped via classical MDS. Gower’s interpolation formula is used to project remaining individuals onto the previous configuration. In all the process, Gower’s distance is used to measure the proximity between individuals. The methodology is illustrated on a real dataset, obtained from the Survey of Health, Ageing and Retirement in Europe (SHARE), which was carried out in 19 countries and represents over 124 million aged individuals in Europe. The performance of the method was evaluated through a simulation study, whose results point out that the new proposal solves the high computational cost of the classical MDS with low error.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 645
Author(s):  
Muhammad Farooq ◽  
Sehrish Sarfraz ◽  
Christophe Chesneau ◽  
Mahmood Ul Hassan ◽  
Muhammad Ali Raza ◽  
...  

Expectiles have gained considerable attention in recent years due to wide applications in many areas. In this study, the k-nearest neighbours approach, together with the asymmetric least squares loss function, called ex-kNN, is proposed for computing expectiles. Firstly, the effect of various distance measures on ex-kNN in terms of test error and computational time is evaluated. It is found that Canberra, Lorentzian, and Soergel distance measures lead to minimum test error, whereas Euclidean, Canberra, and Average of (L1,L∞) lead to a low computational cost. Secondly, the performance of ex-kNN is compared with existing packages er-boost and ex-svm for computing expectiles that are based on nine real life examples. Depending on the nature of data, the ex-kNN showed two to 10 times better performance than er-boost and comparable performance with ex-svm regarding test error. Computationally, the ex-kNN is found two to five times faster than ex-svm and much faster than er-boost, particularly, in the case of high dimensional data.


Author(s):  
Seyede Vahide Hashemi ◽  
Mahmoud Miri ◽  
Mohsen Rashki ◽  
Sadegh Etedali

This paper aims to carry out sensitivity analyses to study how the effect of each design variable on the performance of self-centering buckling restrained brace (SC-BRB) and the corresponding buckling restrained brace (BRB) without shape memory alloy (SMA) rods. Furthermore, the reliability analyses of BRB and SC-BRB are performed in this study. Considering the high computational cost of the simulation methods, three Meta-models including the Kriging, radial basis function (RBF), and polynomial response surface (PRSM) are utilized to construct the surrogate models. For this aim, the nonlinear dynamic analyses are conducted on both BRB and SC-BRB by using OpenSees software. The results showed that the SMA area, SMA length ratio, and BRB core area have the most effect on the failure probability of SC-BRB. It is concluded that Kriging-based Monte Carlo Simulation (MCS) gives the best performance to estimate the limit state function (LSF) of BRB and SC-BRB in the reliability analysis procedures. Considering the effects of changing the maximum cyclic loading on the failure probability computation and comparison of the failure probability for different LSFs, it is also found that the reliability indices of SC-BRB were always higher than the corresponding reliability indices determined for BRB which confirms the performance superiority of SC-BRB than BRB.


Author(s):  
Yuki Takashima ◽  
Toru Nakashika ◽  
Tetsuya Takiguchi ◽  
Yasuo Ariki

Abstract Voice conversion (VC) is a technique of exclusively converting speaker-specific information in the source speech while preserving the associated phonemic information. Non-negative matrix factorization (NMF)-based VC has been widely researched because of the natural-sounding voice it achieves when compared with conventional Gaussian mixture model-based VC. In conventional NMF-VC, models are trained using parallel data which results in the speech data requiring elaborate pre-processing to generate parallel data. NMF-VC also tends to be an extensive model as this method has several parallel exemplars for the dictionary matrix, leading to a high computational cost. In this study, an innovative parallel dictionary-learning method using non-negative Tucker decomposition (NTD) is proposed. The proposed method uses tensor decomposition and decomposes an input observation into a set of mode matrices and one core tensor. The proposed NTD-based dictionary-learning method estimates the dictionary matrix for NMF-VC without using parallel data. The experimental results show that the proposed method outperforms other methods in both parallel and non-parallel settings.


Sign in / Sign up

Export Citation Format

Share Document