scholarly journals Integrating In Situ and Ocean Color Data to Evaluate Ecological Quality under the Water Framework Directive

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3443
Author(s):  
Ana C. Brito ◽  
Paloma Garrido-Amador ◽  
Carla Gameiro ◽  
Marta Nogueira ◽  
Maria Teresa Moita ◽  
...  

The Water Framework Directive (WFD) aims at evaluating the ecological status of European coastal water bodies (CWBs). This is a rather complex task and first requires the use of long-term databases to assess the effect of anthropogenic pressure on biological communities. An in situ dataset was assembled using concomitant biological, i.e., chlorophyll a (Chl a) and environmental data, covering the years from 1995 to 2014, to enable a comprehensive assessment of eutrophication in the Western Iberia Coast (WIC). Given the temporal gaps in the dataset, especially in terms of Chl a, satellite observations were used to complement it. Positive relationships between Chl a 90th percentile and nitrogen concentrations were obtained. The Land-Uses Simplified Index (LUSI), as a pressure indicator, showed no relationship with Chl a, except in Galicia, but it highlighted a higher continental pressure in the Portuguese CWBs in comparison with Galician waters. In general terms, the trophic index (TRIX) showed that none of the CWBs were in degraded conditions. Nevertheless, the relatively high TRIX and LUSI values obtained for the water body in front of Tagus estuary suggest that this area should be subject to continued monitoring. Results highlighted the usefulness of satellite data in water quality assessments and set the background levels for the implementation of operational monitoring based on satellite Chl a. In the future, low uncertainty and harmonized satellite products across countries should be provided. Moreover, the assessment of satellite-based eutrophication indicators should also include metrics on phytoplankton phenology and community structure.

2020 ◽  
Author(s):  
Dainis Jakovels ◽  
Agris Brauns ◽  
Jevgenijs Filipovs ◽  
Tuuli Soomets

<p>Lakes and water reservoirs are important ecosystems providing such services as drinking water, recreation, support for biodiversity as well as regulation of carbon cycling and climate. There are about 117 million lakes worldwide and a high need for regular monitoring of their water quality. European Union Water Framework Directive (WFD) stipulates that member states shall establish a programme for monitoring the ecological status of all water bodies larger than 50 ha, in order to ensure future quality and quantity of inland waters. But only a fraction of lakes is included in in-situ monitoring networks due to limited resources. In Latvia, there are 2256 lakes larger than 1 ha covering 1.5% of Latvian territory, and approximately 300 lakes are larger than 50 ha, but only 180 are included in Inland water monitoring program, in addition, most of them are monitored once in three to six years. Besides, local municipalities are responsible for the management of lakes, and they are also interested in the assessment of ecological status and regular monitoring of these valuable assets. </p><p>Satellite data is a feasible way to monitor lakes over a large region with reasonable frequency and support the WFD status assessment process. There are several satellite-based sensors (eg. MERIS, MODIS, OLCI) available specially designed for monitoring of water quality parameters, however, they are limited only to use for large water bodies due to a coarse spatial resolution (250...1000 m/pix). Sentinel-2 MSI is a space-borne instrument providing 10...20 m/pix multispectral data on a regular basis (every 5 days at the equator and 2..3 days in Latvia), thus making it attractive for monitoring of inland water bodies, especially the small ones (<1 km<sup>2</sup>). </p><p>Development of Sentinel-2 satellite data-based service (SentiLake) for monitoring of Latvian lakes is being implemented within the ESA PECS for Latvia program. The pilot territory covers two regions in Latvia and includes more than 100 lakes larger than 50 ha. Automated workflow for selecting and processing of available Sentinel-2 data scenes for extracting of water quality parameters (chlorophyll-a and TSM concentrations) for each target water body has been developed. Latvia is a northern country with a frequently cloudy sky, therefore, optical remote sensing is challenging in or region. However, our results show that 1...4 low cloud cover Sentinel-2 data acquisitions per month could be expected due to high revisit frequency of Sentinel-2 satellites. Combination of C2X and C2RCC processors was chosen for the assessment of chl-a concentration showing the satisfactory performance - R<sup>2</sup> = 0,82 and RMSE = 21,2 µg/l. Chl-a assessment result is further converted and presented as a lake quality class. It is expected that SentiLake will provide supplementary data to limited in situ data for filling gaps and retrospective studies, as well as a visual tool for communication with the target audience.</p>


2007 ◽  
Vol 56 (4) ◽  
pp. 19-26 ◽  
Author(s):  
G.N.J. ter Heerdt ◽  
S.A. Schep ◽  
J.H. Janse ◽  
M. Ouboter

In order to set ecological goals and determine measures for the European Water Framework Directive, the effects of climate change on lake ecosystems should be estimated. It is thought that the complexity of lake ecosystems makes this effect inherently unpredictable. However, models that deal with this complexity are available and well calibrated and tested. In this study we use the ecosystem model PCLake to demonstrate how climate change might affect the ecological status of a shallow peaty lake in 2050. With the model PCLake, combined with a long-term water and nutrient balance, it is possible to describe adequately the present status of the lake. Simulations of future scenarios with increasing precipitation, evaporation and temperature, showed that climate change will lead to higher nutrient loadings. At the same time, it will lead to lower critical loadings. Together this might cause the lake to shift easier from a clear water to a turbid state. The amount of algae, expressed as the concentration Chl-a, will increase, as a consequence turbidity will increase. The outcome of this study; increasing stability of the turbid state of the lake, and thus the need for more drastic measures, is consistent with some earlier studies.


AMBIO ◽  
2021 ◽  
Author(s):  
Bent T. Christensen ◽  
Birger F. Pedersen ◽  
Jørgen E. Olesen ◽  
Jørgen Eriksen

AbstractThe EU Water Framework Directive (WFD) aims to protect the ecological status of coastal waters. To establish acceptable boundaries between good and moderate ecological status, the WFD calls for reference conditions practically undisturbed by human impact. For Denmark, the nitrogen (N) concentrations present around year 1900 have been suggested to represent reference conditions. As the N load of coastal waters relates closely to runoff from land, any reduction in load links to agricultural activity. We challenge the current use of historical N balances to establish WFD reference conditions and initiate an alternative approach based on parish-level land-use statistics collected 1896/1900 and N concentrations in root zone percolates from experiments with year 1900-relevant management. This approach may be more widely applicable for landscapes with detailed historic information on agricultural activity. Using this approach, we find an average N concentration in root zone percolates that is close to that of current agriculture. Thus, considering Danish coastal waters to be practically unaffected by human activity around year 1900 remains futile as 75% of the land area was subject to agricultural activity with a substantial potential for N loss to the environment. It appears unlikely that the ecological state of coastal waters around year 1900 may serve as WFD reference condition.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Daniela Ducci

This research presents a methodology for assessing nitrate contamination susceptibility in groundwater using thematic maps, derived mainly from the land use map and from statistical data available at national/regional institutes of statistics (especially demographic and environmental data). The methodology was applied in a large area of southern Italy encompassing 4 alluvial and volcanic groundwater bodies, with high concentrations of NO3. The Potential Nitrate Contamination is believed to derive from three sources: agricultural, urban, and periurban. The first one is related to the use of fertilizers. For this reason the land use map was reclassified on the basis of the crop requirements in terms of fertilizers to obtain the Agricultural Potential Nitrate Contamination (APNC) map. The urban source considers leakages from the sewage network and, consequently, it depends on the anthropogenic pressure, expressed by the population density, particularly concentrated in the urbanized areas (Urban Potential Nitrate Contamination (UPNC) map). The periurban sources include unsewered areas, especially present in the periurban context, where illegal sewage connections coexist with on-site sewage disposal (cesspools, septic tanks, and pit latrines) (Periurban Potential Nitrate Contamination (PuPNC) map). The Potential Nitrate Contamination (PNC) map is produced by overlaying the APNC, UPNC, and PuPNC maps. The map combination process is straightforward, being an algebraic combination: the output values are the arithmetic average of the input values. The final pollution susceptibility (RISK) map is obtained by combining the PNC map with the groundwater contamination vulnerability (GwVu) map. The methodology, successfully applied in the study area with a relatively good correlation between the nitrate contamination susceptibility map and the nitrate distribution in groundwater, appears to be effective and have a significant potential for being applied worldwide.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2699 ◽  
Author(s):  
Jian Li ◽  
Liqiao Tian ◽  
Qingjun Song ◽  
Zhaohua Sun ◽  
Hongjing Yu ◽  
...  

Monitoring of water quality changes in highly dynamic inland lakes is frequently impeded by insufficient spatial and temporal coverage, for both field surveys and remote sensing methods. To track short-term variations of chlorophyll fluorescence and chlorophyll-a concentrations in Poyang Lake, the largest freshwater lake in China, high-frequency, in-situ, measurements were collected from two fixed stations. The K-mean clustering method was also applied to identify clusters with similar spatio-temporal variations, using remote sensing Chl-a data products from the MERIS satellite, taken from 2003 to 2012. Four lake area classes were obtained with distinct spatio-temporal patterns, two of which were selected for in situ measurement. Distinct daily periodic variations were observed, with peaks at approximately 3:00 PM and troughs at night or early morning. Short-term variations of chlorophyll fluorescence and Chl-a levels were revealed, with a maximum intra-diurnal ratio of 5.1 and inter-diurnal ratio of 7.4, respectively. Using geostatistical analysis, the temporal range of chlorophyll fluorescence and corresponding Chl-a variations was determined to be 9.6 h, which indicates that there is a temporal discrepancy between Chl-a variations and the sampling frequency of current satellite missions. An analysis of the optimal sampling strategies demonstrated that the influence of the sampling time on the mean Chl-a concentrations observed was higher than 25%, and the uncertainty of any single Terra/MODIS or Aqua/MODIS observation was approximately 15%. Therefore, sampling twice a day is essential to resolve Chl-a variations with a bias level of 10% or less. The results highlight short-term variations of critical water quality parameters in freshwater, and they help identify specific design requirements for geostationary earth observation missions, so that they can better address the challenges of monitoring complex coastal and inland environments around the world.


2021 ◽  
Vol 27 (3) ◽  
pp. 48-67
Author(s):  
M. O’Reilly ◽  
J. Boyle ◽  
S. Nowacki ◽  
M. Elliott ◽  
R. Foster

The history of monitoring transitional water fish in Scotland is briefly outlined. The requirements of the EU Water Framework Directive are explained and how this applies to the monitoring of transitional water fish communities in Scotland is described. The development of a monitoring programme for Scotland is outlined, including sampling methods and strategies. Six transitional waters were selected as representative for Scotland covering three different types of transitional water. A multi-metric tool, the Transitional Water Fish Classification Index was used to assess the ecological status of the fish communities in these waters and the operation of the different metrics and the creation of appropriate reference conditions is explained. The assessment tool was applied to survey data from 2005 to 2018, although only the more recent data fully met the tool requirements. The species composition and abundances in the respective transitional waters were compared. The fully valid surveys were all classed as of Good or High status, indicating the fish communities in all the representative transitional waters appeared to be in good ecological health. The efficacy of the different metrics is considered and some issues with Metric 2, enumerating migratory species, are discussed at length. A new multi-metric tool, the Estuarine Multi-metric Fish Index, is briefly discussed and its introduction for the assessments in Scotland is recommended.


2019 ◽  
Vol 3 ◽  
Author(s):  
Vasselon Valentin ◽  
Rimet Frédéric ◽  
Domaizon Isabelle ◽  
Monnier Olivier ◽  
Reyjol Yorick ◽  
...  

Ecological status assessment of watercourses is based on the calculation of quality indices using pollution sensitivity of targeted biological groups, including diatoms. The determination and quantification of diatom species is generally based on microscopic morphological identification, which requires expertise and is time-consuming and costly. In Europe, this morphological approach is legally imposed by standards and regulatory decrees by the Water Framework Directive (WFD). Over the past decade, a DNA-based molecular biology approach has newly been developed to identify species based on genetic criteria rather than morphological ones (i.e. DNA metabarcoding). In combination with high throughput sequencing technologies, metabarcoding makes it possible both to identify all species present in an environmental sample and to process several hundred samples in parallel. This article presents the results of two recent studies carried out on the WFD networks of rivers of Mayotte (2013–2018) and metropolitan France (2016–2018). These studies aimed at testing the potential application of metabarcoding for biomonitoring in the context of the WFD. We discuss the various methodological developments and optimisations that have been made to make the taxonomic inventories of diatoms produced by metabarcoding more reliable, particularly in terms of species quantification. We present the results of the application of this DNA approach on more than 500 river sites, comparing them with those obtained using the standardised morphological method. Finally, we discuss the potential of metabarcoding for routine application, its limits of application and propose some recommendations for future implementation in WFD.


Author(s):  
S. Jutz ◽  
M.P. Milagro-Pérez

<span>The European Union-led Copernicus programme, born with the aim of developing space-based global environmental monitoring services to ensure a European autonomous capacity for Earth Observation, comprises a Space Component, Core Services, and In-situ measurements. The Space Component, coordinated by ESA, has seven Sentinel satellites in orbit, with further missions planned, and is complemented by contributing missions, in-situ sensors and numerical models, and delivers many terabytes of accurate climate and environmental data, free and open, every day to hundreds of thousands of users. This makes Copernicus the biggest provider of Earth Observation data in the world.</span>


Sign in / Sign up

Export Citation Format

Share Document