scholarly journals Study on the Preferential Flow Characteristics under Different Precipitation Amounts in Simian Mountain Grassland of China

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3489
Author(s):  
Mingfeng Li ◽  
Jingjing Yao ◽  
Jinhua Cheng

Understanding the response of preferential flow paths to water movement is an important topic in soil hydrology. However, quantification of the complicated distribution patterns of preferential flow paths remains poorly understood. Therefore, dye experiments were conducted to investigate preferential flow characteristics under three different precipitation amounts (20, 40 and 60 mm, numbered as the G20, G40 and G60, respectively) in Simian Mountain grassland, Chongqing province, China. O-ring statistics were used to analyze the spatial distribution characteristics and the spatial correlation of preferential flow paths. Results revealed that precipitation could promote dye tracer infiltration into deeper soils, reaching the maximum depth of 55 cm in G60. The number of preferential flow paths in G60 plots was 3.0 and 7.4 times greater than those of G40 and G20, respectively. Structural distribution of the preferential flow paths showed a gradually clumped pattern with the increase of precipitation, which was conducive to enhancing the correlation between preferential flow paths in each pore size range. These results could expand our understanding of the effects of precipitation on the characteristic of preferential flow paths in grassland, which is helpful to evaluate the water movement in the study area.

1997 ◽  
Vol 1 (4) ◽  
pp. 823-833 ◽  
Author(s):  
T. S. Steenhuis ◽  
M. Bodnar ◽  
L. D. Geohring ◽  
S.-A. Aburime ◽  
R. Wallach

Abstract. Agricultural tile drainage lines have been implicated as a source of pesticide contamination of surface waters. Field experiments were conducted and a simple model was developed to examine preferential transport of applied chemicals to agricultural tile lines. The conceptual model consists of two linear reservoirs, one near the soil surface and one near the tile drain. The connection between the two reservoirs is via preferential flow paths with very little interaction with the soil matrix. The model assumes that only part of the field contributes solutes to the tile drain. The model was evaluated with data from the field experiments in which chloride, 2,4-D, and atrazine concentrations were measured on eight tile-drained plots that were irrigated twice. Atrazine was applied two months prior to the experiment, 2,4-D was sprayed just before the first irrigation, and chloride before the second irrigation. All three chemicals were found in the tile effluent shortly after the rainfall began. Generally, the concentration increased with increased flow rates and decreased exponentially after the rainfall ceased. Although the simple model could simulate the observed chloride concentration patterns in the tile outflow for six of the eight plots, strict validation was not possible because of the difficulty with independent measurement of the data needed for a preferential flow model applied to field conditions. The results show that, to simulate pesticide concentration in tile lines, methods that can measure field averaged preferential flow characteristics need to be developed.


2002 ◽  
Vol 66 (2) ◽  
pp. 347 ◽  
Author(s):  
Zhi Wang ◽  
Jianhang Lu ◽  
Laosheng Wu ◽  
Thomas Harter ◽  
William A. Jury

2005 ◽  
Vol 69 (2) ◽  
pp. 291-300 ◽  
Author(s):  
Young-Jin Kim ◽  
Christophe J. G. Darnault ◽  
Nathan O. Bailey ◽  
J.-Yves Parlange ◽  
Tammo S. Steenhuis

SPE Journal ◽  
2015 ◽  
Vol 20 (04) ◽  
pp. 689-700 ◽  
Author(s):  
S.. Ameen ◽  
A. Dahi Taleghani

Summary Injectivity loss is a common problem in unconsolidated-sand formations. Injection of water into a poorly cemented granular medium may lead to internal erosion, and consequently formation of preferential flow paths within the medium because of channelization. Channelization in the porous medium might occur when fluid-induced stresses become locally larger than a critical threshold and small grains are dislodged and carried away; hence, porosity and permeability of the medium will evolve along the induced flow paths. Vice versa, flowback during shut-in might carry particles back to the well and cause sand accumulation inside the well, and subsequently loss of injectivity. In most cases, to maintain the injection rate, operators will increase injection pressure and pumping power. The increased injection pressure results in stress changes and possibly further changes in channel patterns around the wellbore. Experimental laboratory studies have confirmed the presence of the transition from uniform Darcy flow to a fingered-pattern flow. To predict these phenomena, a model is needed to fill this gap by predicting the formation of preferential flow paths and their evolution. A model based on the multiphase-volume-fraction concept is used to decompose porosity into mobile and immobile porosities where phases may change spatially, evolve over time, and lead to development of erosional channels depending on injection rates, viscosity, and rock properties. This model will account for both particle release and suspension deposition. By use of this model, a methodology is proposed to derive model parameters from routine injection tests by inverse analysis. The proposed model presents the characteristic behavior of unconsolidated formation during fluid injection and the possible effect of injection parameters on downhole-permeability evolution.


Biofouling ◽  
2013 ◽  
Vol 29 (9) ◽  
pp. 1069-1086 ◽  
Author(s):  
Simona Bottero ◽  
Tomas Storck ◽  
Timo J. Heimovaara ◽  
Mark C.M. van Loosdrecht ◽  
Michael V. Enzien ◽  
...  

2017 ◽  
Vol 21 (11) ◽  
pp. 5503-5515 ◽  
Author(s):  
Hiroyuki Hirashima ◽  
Francesco Avanzi ◽  
Satoru Yamaguchi

Abstract. The heterogeneous movement of liquid water through the snowpack during precipitation and snowmelt leads to complex liquid water distributions that are important for avalanche and runoff forecasting. We reproduced the formation of capillary barriers and the development of preferential flow through snow using a three-dimensional water transport model, which was then validated using laboratory experiments of liquid water infiltration into layered, initially dry snow. Three-dimensional simulations assumed the same column shape and size, grain size, snow density, and water input rate as the laboratory experiments. Model evaluation focused on the timing of water movement, thickness of the upper layer affected by ponding, water content profiles and wet snow fraction. Simulation results showed that the model reconstructs relevant features of capillary barriers, including ponding in the upper layer, preferential infiltration far from the interface, and the timing of liquid water arrival at the snow base. In contrast, the area of preferential flow paths was usually underestimated and consequently the averaged water content in areas characterized by preferential flow paths was also underestimated. Improving the representation of preferential infiltration into initially dry snow is necessary to reproduce the transition from a dry-snow-dominant condition to a wet-snow-dominant one, especially in long-period simulations.


2013 ◽  
Vol 17 (3) ◽  
pp. 947-959 ◽  
Author(s):  
D. M. Krzeminska ◽  
T. A. Bogaard ◽  
J.-P. Malet ◽  
L. P. H. van Beek

Abstract. The importance of hydrological processes for landslide activity is generally accepted. However, the relationship between precipitation, hydrological responses and movement is not straightforward. Groundwater recharge is mostly controlled by the hydrological material properties and the structure (e.g., layering, preferential flow paths such as fissures) of the unsaturated zone. In slow-moving landslides, differential displacements caused by the bedrock structure complicate the hydrological regime due to continuous opening and closing of the fissures, creating temporary preferential flow paths systems for infiltration and groundwater drainage. The consecutive opening and closing of fissure aperture control the formation of a critical pore water pressure by creating dynamic preferential flow paths for infiltration and groundwater drainage. This interaction may explain the seasonal nature of the slow-moving landslide activity, including the often observed shifts and delays in hydrological responses when compared to timing, intensity and duration of precipitation. The main objective of this study is to model the influence of fissures on the hydrological dynamics of slow-moving landslide and the dynamic feedbacks between fissures, hydrology and slope stability. For this we adapt the spatially distributed hydrological and slope stability model (STARWARS) to account for geotechnical and hydrological feedbacks, linking between hydrological response of the landside and the dynamics of the fissure network and applied the model to the hydrologically controlled Super-Sauze landslide (South French Alps).


2009 ◽  
Vol 13 (6) ◽  
pp. 935-944 ◽  
Author(s):  
A. E. Anderson ◽  
M. Weiler ◽  
Y. Alila ◽  
R. O. Hudson

Abstract. Preferential flow paths have been found to be important for runoff generation, solute transport, and slope stability in many areas around the world. Although many studies have identified the particular characteristics of individual features and measured the runoff generation and solute transport within hillslopes, very few studies have determined how individual features are hydraulically connected at a hillslope scale. In this study, we used dye staining and excavation to determine the morphology and spatial pattern of a preferential flow network over a large scale (30 m). We explore the feasibility of extending small-scale dye staining techniques to the hillslope scale. We determine the lateral preferential flow paths that are active during the steady-state flow conditions and their interaction with the surrounding soil matrix. We also calculate the velocities of the flow through each cross-section of the hillslope and compare them to hillslope scale applied tracer measurements. Finally, we investigate the relationship between the contributing area and the characteristics of the preferential flow paths. The experiment revealed that larger contributing areas coincided with highly developed and hydraulically connected preferential flow paths that had flow with little interaction with the surrounding soil matrix. We found evidence of subsurface erosion and deposition of soil and organic material laterally and vertically within the soil. These results are important because they add to the understanding of the runoff generation, solute transport, and slope stability of preferential flow-dominated hillslopes.


Sign in / Sign up

Export Citation Format

Share Document