scholarly journals Laboratory Tests of New Groundwater Table Level Regulators in Subsurface Drainage Systems

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 631
Author(s):  
Zbigniew Popek ◽  
Sławomir Bajkowski ◽  
Piotr Siwicki ◽  
Janusz Urbański

The changes in hydrological conditions observed nowadays require economical use of water. This applies to water management both on a national scale and river basins and catchments, as well as on the scale of drainage systems and individual drainage networks. Outflow regulation is carried out by extending the outflow time of surface water collected during rainfall in various forms of retention in the catchment area. One of the devices for regulating the outflow of groundwater is a drainage network, traditionally used as a drainage system. The water level regulators presented in this article enable the damming of water in the drainage network, in pipelines and in the adjacent ground. The conducted tests were aimed at determining the hydraulic characteristics and operating conditions of two innovative solutions of water level regulators in drainage systems. These regulators are characterised by the possibility of smooth regulation by the use of rotary or propeller systems for smoothly setting the damming level. Both tested regulators are characterised by the presence of an effective flow, the value of which was set at the level of Qe = 0.17 l∙s−1 to Qe = 0.25 l∙s−1 for the funnel regulator and Qe = 0.009 l∙s−1 to Qe = 0.015 l∙s−1 for a hole regulator. Laboratory tests of the prototypes showed that the funnel regulator allows one to maintain the damming level in a flow rate range of up to 5.5 l∙s−1, with possible damming up to 3 cm, regardless of the height of the shaft. The hole regulator is characterised by a flow control range of up to Q = 0.65 l∙s−1, greater variability of the damming levels and the need to change the position of the working openings, depending on the flow rate.

1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 514
Author(s):  
Leonardo Bayas-Jiménez ◽  
F. Javier Martínez-Solano ◽  
Pedro L. Iglesias-Rey ◽  
Daniel Mora-Melia ◽  
Vicente S. Fuertes-Miquel

A problem for drainage systems managers is the increase in extreme rain events that are increasing in various parts of the world. Their occurrence produces hydraulic overload in the drainage system and consequently floods. Adapting the existing infrastructure to be able to receive extreme rains without generating consequences for cities’ inhabitants has become a necessity. This research shows a new way to improve drainage systems with minimal investment costs, using for this purpose a novel methodology that considers the inclusion of hydraulic control elements in the network, the installation of storm tanks and the replacement of pipes. The presented methodology uses the Storm Water Management Model for the hydraulic analysis of the network and a modified Genetic Algorithm to optimize the network. In this algorithm, called the Pseudo-Genetic Algorithm, the coding of the chromosomes is integral and has been used in previous studies of hydraulic optimization. This work evaluates the cost of the required infrastructure and the damage caused by floods to find the optimal solution. The main conclusion of this study is that the inclusion of hydraulic controls can reduce the cost of network rehabilitation and decrease flood levels.


2012 ◽  
Vol 452-453 ◽  
pp. 538-542 ◽  
Author(s):  
Abdelkader Djehiche ◽  
Rekia Amieur ◽  
Mustafa Gafsi

This paper presents an experimental study of a homogenous earth dam. The work is focused to the search of solutions of problems encountered in the earth dams after their construction. One of the major problems is the choice and design of systems of drainage. The effective drainage system to prevent harmful accumulations of excess water is one of the most important roles of dams. Efficient drainage systems can improve the safety of earth dams. The paper presented herein reports the results obtained from the experimental study. Empiric relations have been obtained which can be help in the control of the flow rate in the chimney drain of the earth dams on pervious foundation, which can increase safety earth dams


2012 ◽  
Vol 170-173 ◽  
pp. 2380-2385
Author(s):  
Xiao Min Zhu ◽  
Bing Huang ◽  
Shu Dong Wang ◽  
Jin Long Zheng ◽  
Bo Yao ◽  
...  

A model for simulating combined drainage networks in Chuangfang river basin of Kunming City based on the Storm Water Management Model was established. The type and period of using water base on residential area, marketplace, school area, and guesthouse area Kunming city were introduced into the model, and their infection for drainage system was research. The results show that simulation results of two outlets flow have coherence with monitoring data based two typical rainfall in Kunming, the Nash-Sutcliffe efficiency coefficient is 0.71-0.82. And the model can be using analyze ‘bottleneck’ nodes and restricting conduits, simulating the running status of drainage network of combined drainage at raining and draining peak time of sewage water. The research provide strong technical support for rebuild drainage network in Kunming or other city.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


2018 ◽  
Vol 8 (11) ◽  
pp. 2063 ◽  
Author(s):  
Hyun-Kyung Lee ◽  
Kwang-Hwan Choi ◽  
Jung-In Yoon ◽  
Choon-Geun Moon ◽  
Min-Ju Jeon ◽  
...  

In this study, to investigate the performance characteristics of a seawater ice-making device, using a scraped surface double tube evaporator, experiments were conducted under various operating conditions, including inlet temperature and flow rate of seawater, evaporating temperature, and scraper rotation speed. The main results are summarized as follows: (1) The section where stable ice making is possible, is determined by the inlet temperature and the flow rate range of seawater. By controlling the flow rate of seawater, the ice packing factor (IPF) of the device can be adjusted from 0.3 to 14.7%. (2) The IPF increases in cases where the evaporating temperature decreases linearly, until −13 °C. As the temperature of refrigerant that flows into the evaporator changes, the IPF is changed. Consideration is required for these connections. (3) The IPF increases when speeding up the scraper. The minimum rotating speed of the scraper was 350 rpm in these experiments. Optimum operating conditions for the seawater ice slurry maker are established through experiments. These results will be considered as important data for designing a slurry type seawater ice-making device.


2013 ◽  
Vol 16 (2) ◽  
pp. 319-340 ◽  
Author(s):  
Arlex Sanchez ◽  
Neiler Medina ◽  
Zoran Vojinovic ◽  
Roland Price

The paper describes and demonstrates an integrated cellular automata evolutionary-based approach for evaluating future scenarios including the expansion of urban drainage networks. The approach can be used to derive a drainage network layout based on future land use scenarios. Two techniques are used to derive the layout of the system: one using agent-based modelling and the other using similar principles built as a set of raster operations within ArcGIS. The tools and models are applied to a case study in Birmingham, UK. The results show that both techniques perform well for carrying out a scoping analysis at an urban scale. The case study shows that the application of the proposed approach for simulating urban growth processes and the consequent expansion of the drainage networks can achieve promising results. The interconnected drainage model for Birmingham shows that future developments will contribute further to flooding problems if no improvements are made to the existing drainage system. The same approach can be used to identify those drainage system elements that require immediate attention and which need to be replaced in order to improve the overall system performance.


2011 ◽  
Vol 4 (2) ◽  
pp. 365 ◽  
Author(s):  
Julio Caetano Tomazoni ◽  
Elisete Guimarães ◽  
Tayoná Cristina Gomes ◽  
Taisller Guimarães da Silva

Este trabalho avalia a adequação do uso de modelos digitais de elevação, provenientes da manipulação de dados altimétricos da missão SRTM e do instrumento imageador ASTER, para atualização de mapas da rede de drenagem do município de Renascença PR. Para caracterização da rede de drenagem a partir de dados SRTM e ASTER utilizou-se o software SPRING 5.1.7. A rede hidrográfica, obtida por esses dois métodos foi cruzada com a malha hidrográfica extraída de cartas geográficas do exército e imagens ortorretificadas do satélite SPOT 5. Os resultados demonstram que a rede de drenagem, obtida a partir de dados SRTM e ASTER, não é satisfatória por não determinar a grande maioria dos cursos d’água de primeira e segunda ordens. Já os de terceira, quarta e quinta ordens, que são identificados, na grande maioria estão localizados fora do curso real encontrados pelas cartas do exército e imagens ortorretificadas. Os dados demonstram que a vegetação das matas ciliares são captadas pelo SRTM e ASTER e interferem nas variações de altitude e por conseguinte no mau delineamento das redes de drenagem.Palavras chaves – Rede de drenagem; hidrografia; modelos digitais de elevação; SRTM, ASTER.  Use of Digital Elevation Model Generated from the SRTM and ASTER GDEM for Characterization of Drainage  ABSTRACTThis paper assesses the suitability of using digital elevation models, resulting from manipulation of altimetric mission SRTM and ASTER instrument, to update maps of the drainage network in the municipality of Renaissance PR. To characterize the drainage network from SRTM and ASTER data used the software SPRING 5.1.7. The hydrographic network, obtained by these two methods was crossed with a mesh extracted from hydrographic maps of the army and orthorectified images of the SPOT 5 satellite. The results show that the drainage system, derived from SRTM and ASTER data is not satisfactory because they do not determine the vast majority of streams of first and second orders. Already the third, fourth and fifth orders, which are identified in the vast majority are located outside the actual course of the letters found by the army and orthorectified images. The data show that the riparian vegetation are acquired by SRTM and ASTER and interfere with the variations in altitude and therefore the bad design of drainage networks. Keywords - Drainage network; hydrography; digital elevation models; SRTM; ASTER GDEM.


2020 ◽  
Author(s):  
Olga Balun ◽  
Lyudmila Tiranova

Under the influence of drainage, new ecological regimes of groundwater and soil moisture are formed, which in turn form new nutrient regimes. The objects of this study are the ecological regimes of lands reclaimed in different ways: by an open drainage network (with the use of runoff hollows) and a closed drainage network. Experimental plots are located in the Novgorod region on sod-podzolic soil. The efficiency of the reclamation system is determined by the groundwater regime. The results of the research prove that the regime of groundwater in closed drainage systems is more favorable compared to the open drainage system. The analysis of the nutrient regime of drained soils showed a decrease in agrochemical indicators due to the removal of minerals by runoff. More mineral salts are washed away in closed drainage (up to 711 kg/ha). Considering the agrochemical composition of the soil, calcium ions are removed most intensively from sod-podzolic soils. The water-physical properties of the drained lands, such as density, porosity and moisture content, have also changed. The study of water-air regimes of reclaimed soils revealed a significant difference in the degree of moisture of the plow and subsurface layers when implementing either one or different methods of drainage. A more favorable water-air regime is created by closed drainage systems in the subsurface layer, and by open drainage systems – in the plow layer.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2576
Author(s):  
Janusz Kubrak ◽  
Elżbieta Kubrak ◽  
Edmund Kaca ◽  
Adam Kiczko ◽  
Michał Kubrak

This article introduces a flow controller for an upstream water head designed for pipe culverts used in drainage ditches or wells. The regulator is applicable to water flow rates in the range of Qmin < Q < Qmax and the water depth H0, exceeding which causes the gate to open. Qmin flow denotes the minimum flow rate that allows water to accumulate upstream of the controller. Above the maximum flow rate Qmax, the gate remains in the open position. In the present study, the position of the regulator’s gate axis was related to the water depth H0 in front of the device. Derived dependencies were verified in hydraulic experiments. The results confirmed the regulator’s usefulness for controlling the water level.


Sign in / Sign up

Export Citation Format

Share Document