scholarly journals Theoretical and Experimental Analysis of Operating Conditions of a Circular Flap Gate for an Automatic Upstream Water Level Control

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2576
Author(s):  
Janusz Kubrak ◽  
Elżbieta Kubrak ◽  
Edmund Kaca ◽  
Adam Kiczko ◽  
Michał Kubrak

This article introduces a flow controller for an upstream water head designed for pipe culverts used in drainage ditches or wells. The regulator is applicable to water flow rates in the range of Qmin < Q < Qmax and the water depth H0, exceeding which causes the gate to open. Qmin flow denotes the minimum flow rate that allows water to accumulate upstream of the controller. Above the maximum flow rate Qmax, the gate remains in the open position. In the present study, the position of the regulator’s gate axis was related to the water depth H0 in front of the device. Derived dependencies were verified in hydraulic experiments. The results confirmed the regulator’s usefulness for controlling the water level.

Author(s):  
B. R. Nichols ◽  
R. L. Fittro ◽  
C. P. Goyne

Many high-speed, rotating machines across a wide range of industrial applications depend on fluid film bearings to provide both static support of the rotor and to introduce stabilizing damping forces into the system through a developed hydrodynamic film wedge. Reduced oil supply flow rate to the bearings can cause cavitation, or a lack of a fully developed film layer, at the leading edge of the bearing pads. Reducing oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses due to shear forces. While machine efficiency may be improved with reduced lubricant flow, little experimental data on its effects on system stability and performance can be found in the literature. This study looks at overall system performance of a test rig operating under reduced oil supply flow rates by observing steady-state bearing performance indicators and baseline vibrational response of the shaft. The test rig used in this study was designed to be dynamically similar to a high-speed industrial compressor. It consists of a 1.55 m long, flexible rotor supported by two tilting pad bearings with a nominal diameter of 70 mm and a span of 1.2 m. The first bending mode is located at approximately 5,000 rpm. The tiling-pad bearings consist of five pads in a vintage, flooded bearing housing with a length to diameter ratio of 0.75, preload of 0.3, and a load-between-pad configuration. Tests were conducted over a number of operating speeds, ranging from 8,000 to 12,000 rpm, and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings under each condition. For nearly all operating conditions, a low amplitude, broadband subsynchronous vibration pattern was observed in the frequency domain from approximately 0–75 Hz. When the test rig was operated at running speeds above its first bending mode, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. This vibration signature is often considered a classic sign of rotordynamic instability attributed to oil whip and shaft whirl phenomena. For low and moderate load conditions, the amplitude of this 0.5x subsynchronous peak increased with decreasing oil supply flow rate at all operating speeds. Under the high load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this subsynchronous vibration including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results. Implications of reduced oil supply flow rate on system stability and operational limits are also discussed.


2019 ◽  
Vol 35 (5) ◽  
pp. 745-749
Author(s):  
L. E. Christianson ◽  
R. D. Christianson ◽  
A. E. Lipka ◽  
S. Bailey ◽  
J. Chandrasoma ◽  
...  

Abstract. Dependable flow rate measurements are necessary to calculate flow volumes and resulting nutrient loads from subsurface drainage systems and associated conservation practices. The objectives of this study were (1) to develop appropriate weir equations for a new stainless steel-edged 45° V-notch weir developed for AgriDrain inline water level control structures and (2) to determine if the equation was independent of flow depth in the structure. Weirs for 15 cm (6 in.) and 25 cm (10 in.) inline water level control structures were placed at three heights in each structure: at the base, 48 cm from the base, or 97 cm from the base, and the height of the nappe above the weir crest was recorded over a range of flow rates. The resulting data were fitted to equations of the form Q = aHb where Q is the flow rate, H is the height of the nappe above the weir crest, and a and b are fitted parameters. There were no significant differences in the fitted parameters across the two structure sizes or across the three weir placements. The fitted equation for these new stainless steel-edged V-notch weirs was Q = 0.011H2.28 with Q in liters per second and H in centimeters, and Q = 1.44H2.28, with Q in gallons per minute and H in inches. These equations can be used for measuring flow through AgriDrain in-line structures, although in-house weir calibration is highly recommended for specific applications, when possible. Keywords: Drainage, Flow monitoring, Subsurface drainage, V-notch weir, Weir calibration.


2005 ◽  
Vol 127 (4) ◽  
pp. 752-760 ◽  
Author(s):  
Danny Blanchard ◽  
Phil Ligrani ◽  
Bruce Gale

The development and performance of a novel miniature pump called the rotary shaft pump (RSP) is described. The impeller is made by boring a 1.168 mm hole in one end of a 2.38 mm dia shaft and cutting slots in the side of the shaft at the bottom of the bored hole such that the metal between the slots defines the impeller blades. The impeller blades and slots are 0.38 mm tall. Several impeller designs are tested over a range of operating conditions. Pump performance characteristics, including pressure rise, hydraulic efficiency, slip factor, and flow rate, are presented for several different pump configurations, with maximum flow rate and pressure rise of 64.9ml∕min and 2.1 kPa, respectively, when the working fluid is water. Potential applications include transport of biomedical fluids, drug delivery, total analysis systems, and electronics cooling.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xinfu Liu ◽  
Chunhua Liu ◽  
Jianjun Wu

A modern methodology is presented for the system analysis of flowing pressures in order to forecast the dynamic behavior and solve the forthcoming problems that emerge in two-phase coalbed methane (CBM) wellbores. The proposed methodology involves a numerical integration technique to calculate flowing pressures and pressure drops of CBM and water flow from the bottom hole to the well head. The methodology is validated against full-scale measured data in coalfields. The relationships developed match CBM reservoir behavior and wellbore conditions along the annulus with an overall accuracy of 1.13%. The computation of flowing pressures involves a liquid holdup and kinetic energy term with flow rate increments, a compressibility factor with depth increments, and a friction factor with Reynolds number. The flowing pressures of a two-phase column fully reflect the dynamic flowing performance due to the combined action of the water level, CBM, and water flow rates. The effect of CBM and water column pressures is more obvious than that of CBM column pressures. The pressure ratios of CBM and the water column to the bottom hole decline rapidly with the increase of the dynamic water level. CBM and water flow rates can be improved with increases in CBM and water column pressure for two-phase producing wellbores. The decrease of flowing pressures and increased increment of the pressure drop for the two-phase column are beneficial to CBM desorption and result in the increased CBM and water production. It will control the falling speed of the dynamic water level above CBM and the water column and enhance CBM reservoir productivity. The increases of CBM and water column pressure from 34.6 kPa to 922 kPa and the decreases of pressure in the bottom hole from 2.252 MPa to 1.328 MPa lead to the increases of the CBM flow rate from 3327 m3/d to 6721 m3/d.


Author(s):  
Francois G. Louw ◽  
Theodor W. von Backström ◽  
Sybrand J. van der Spuy

Large axial flow fans are used in forced draft air cooled heat exchangers (ACHEs). Previous studies have shown that adverse operating conditions cause certain sectors of the fan, or the fan as a whole to operate at very low flow rates, thereby reducing the cooling effectiveness of the ACHE. The present study is directed towards the experimental and numerical analyses of the flow in the vicinity of an axial flow fan during low flow rates. This is done to obtain the global flow structure up and downstream of the fan. A near-free-vortex fan, designed for specific application in ACHEs, is used for the investigation. Experimental fan testing was conducted in a British Standard 848, type A fan test facility, to obtain the fan characteristic. Both steady-state and time-dependent numerical simulations were performed, depending on the operating condition of the fan, using the Realizable k-ε turbulence model. Good agreement is found between the numerically and experimentally obtained fan characteristic data. Using data from the numerical simulations, the time and circumferentially averaged flow field is presented. At the design flow rate the downstream fan jet mainly moves in the axial and tangential direction, as expected for a free-vortex design criteria, with a small amount of radial flow that can be observed. As the flow rate through the fan is decreased, it is evident that the down-stream fan jet gradually shifts more diagonally outwards, and the region where reverse flow occur between the fan jet and the fan rotational axis increases. At very low flow rates the flow close to the tip reverses through the fan, producing a small recirculation zone as well as swirl at certain locations upstream of the fan.


2021 ◽  
Vol 3 ◽  
Author(s):  
Kenneth E. Okedu ◽  
Mohsin Said Al Siyabi

Hydropower technology is a simple and renewable form of energy that involves the conversion of potential energy due to head and mass flow rate of water into kinetic energy that drives a water turbine connected to a generator. In this paper, the potential of hydropower in the Sultanate of Oman is studied, considering Wadi Dayqah Dam in Quriyat. The following variables of the dam were used in evaluating its potential for electricity generation for the year 2010 through 2018: the amount of water flowing in and out of the dam and the amount of water available in the dam at the beginning and end of the considered years. A recommendation was made for the type of hydro turbine for maximum power extraction from the dam, based on the available water head and flow rate, considering the standard characteristic selection envelope for hydro turbines. Power generation from the dam could be affected as a result of the decline in reservoir water level, the continuous release of water for irrigation purposes, fear of the aftermath of a cyclone, lack of rains for consecutive years, and high evaporation. However, the occurrence of a cyclone increases the reservoir water level of the dam for more power generation. Some long-term scenarios for effective operation of the dam considering water availability and management were discussed. In addition, some ways of mitigating water loss from the reservoir of the dam through evaporation were proposed.


2008 ◽  
Author(s):  
Saad A. Ahmed

The operation of centrifugal compressor systems is limited at low-mass flow rates by fluid flow instabilities leading to rotating stall or surge. These instabilities limit the flow range in which the compressor can operate. They also lower the performance and efficiency of the compressor. Experiments were conducted to investigate a model of radial vaneless diffuser at stall as well as stall-free operating conditions. The speed of the impeller was kept constant at 2000 RPM, while the mass flow rate was reduced gradually to scan the steady and unsteady operating conditions of the compressor. The flow rate through the compressor was gradually decreased until flow instability is initiated at the diffuser. The flow rate was further reduced to study the characteristics of rotating stall. These measurements were reported for diffuser diameter ratios, Do/Di, of 2.0 with diffuser width ratio, b/Di, of 0.055. At lower flow rates than the critical, the rotating stall pattern with one stall cell was dominant over the pattern with two cells. In addition, the instability in the diffuser was successfully delayed to a lower flow coefficient when rough surfaces were attached to one or both sides of the diffuser with the lowest values achieved by attaching the rough surface to the shroud. Results show that the roughness has no significant effect on stall cell characteristics.


Author(s):  
Azzam S. Salman ◽  
Jamil A. Khan

An experimental study was conducted in a closed loop spray cooling system working with deionized water as a cooling medium, to investigate the effects of surface modification on the spray cooling heat transfer enhancement in the single-phase region. Plain copper surface with diameter 1.5 cm and an enhanced surface with circular grooves were tested under different operating conditions. The volumetric flow rate of the coolant ranged from 115 mL/min to 177 mL/min., and the water inlet temperature was kept between 21–23 °C. Also, the distances between the nozzle and the target surface were varied at 8, 10, and 12 mm respectively. The results show that the distance between the nozzle and the target surface did not have a significant effect on the heat transfer performance for the low flow rates, while it has a slight effect on high flow rates for both surfaces. Also, increasing the liquid volumetric flow rate increases the amount of heat removed, and the heat transfer coefficient for both surfaces. Moreover, the maximum enhancement ratios achieved were 23.4% and 31% with volumetric flow rates of 153 mL/min, and 177 mL/min respectively.


Sign in / Sign up

Export Citation Format

Share Document