scholarly journals Origin of Drusy Dolomite Cement in Permo-Triassic Dolostones, Northern United Arab Emirates

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1908
Author(s):  
Howri Mansurbeg ◽  
Mohammad Alsuwaidi ◽  
Shijun Dong ◽  
Salahadin Shahrokhi ◽  
Sadoon Morad

While the characteristics and origin of drusy calcite cement in carbonate deposits is well constrained in the literature, little attention is paid to drusy dolomite cement. Petrographic observations, stable isotopes, and fluid-inclusion microthermometry suggest that drusy dolomite cement in Permo-Triassic conglomerate/breccia dolostone beds in northern United Arab Emirates has precipitated as cement and not by dolomitization of drusy calcite cement. The low 18OVPDB (−9.4‰ to −6.2‰) and high homogenization temperatures of fluid inclusions in drusy dolomite (Th = 73–233 °C) suggest that dolomitization was caused by hot basinal brines (salinity = 23.4 wt% NaCl eq.). The 13CVPDB values (+0.18‰ to +1.6‰) and 87Sr/86Sr ratio (0.708106 to 0.708147) indicate that carbon and strontium were derived from the host marine Permo-Triassic carbonates. Following this dolomitization event, blocky calcite (Th = 148 °C; salinity = 20.8 wt% NaCl eq.) precipitated from the hot basinal brines. Unravelling the origin of drusy dolomite cement has important implications for accurate construction of paragenetic sequences in carbonate rocks and decipher the origin and chemistry of diagenetic waters in sedimentary basins.


1990 ◽  
Vol 54 (375) ◽  
pp. 289-294 ◽  
Author(s):  
M. Giamello ◽  
F. Riccobono ◽  
G. Sabatini

AbstractThe Pb–Zn deposit at Sant'Antonio di Val d'Aspra in the Farma Valley (Southern Tuscany) is hosted by Lower Moscovian carbonate rocks and shows many characters commonly found in Mississippi Valley type (MVT) deposits. Ore minerals (essentially sphalerite and galena) are closely confined to dolomitized portions of an only partly preserved black limestone. Mineralized carbonate rocks appear to have been eroded before the deposition of the overlying Upper Moscovian (Late Podolskian) shales. The diffuse presence of structures frequently found in internal sediments of karstic cavities indicates that supergene mechanisms have played an important role in the history of the deposit. A fluid inclusion study carried out on ore and gangue minerals revealed the presence of two different types of inclusions. The homogenization temperatures ranged from 120°C to 225°C but the most frequently found values were around 170°C. Salinity ranged from moderately low values up to 20 eq. wt. % NaCl. Lead isotopic composition rules out any relationship between the Sant'Antonio mineralization and Tertiary hydrothermal base metal occurrences in the same area. When all the data are taken together, a contrast is evident between geo-petrographic and isotopic data on the one hand, and fluid-inclusion microthermometry on the other.



2021 ◽  
Vol 62 (03) ◽  
pp. 377-387
Author(s):  
B.B. Kochnev ◽  
A.B. Kuznetsov ◽  
D.R. Sitkina ◽  
A.Yu. Kramchaninov

Abstract —The least altered limestones of the Ukta and Eselekh formations in the Precambrian section of the Kharaulakh uplift have a minimum 87Sr/86Sr ratio of 0.70673–0.70715. The lowest 87Sr/86Sr ratio of the overlying Neleger and Sietachan formations is 0.70791–0.70817. Based on these data, along with the earlier obtained positive δ13С values (up to 8‰) for the Kharaulakh section, we have estimated the age of the Ukta and Eselekh formations at 800–670 Ma and the age of the Neleger and Sietachan formations at ~640–580 Ma. The Pb–Pb isochron age of the least altered limestones of the Eselekh Formation calculated from eight samples is 720 ± 30 Ma. This age permits us to define the lower part of the Kharaulakh section of the Ukta and Eselekh formations to be the late Tonian of the International Chronostratigraphic Chart or to the Upper Riphean of the General Stratigraphic Scale of Russia. The presence of reliably dated Upper Riphean sediments in the Kharaulakh uplift indicates a more complex structure of the Precambrian sedimentary cover on the Arctic margin of the Siberian Platform than assumed earlier.



Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 422
Author(s):  
Daniel Marshall ◽  
Carol-Anne Nicol ◽  
Robert Greene ◽  
Rick Sawyer ◽  
Armond Stansell ◽  
...  

Gold, present as electrum, in the Battle Gap, Ridge North-West, HW, and Price deposits at the Myra Falls mine, occurs in late veinlets cutting the earlier volcanogenic massive sulphide (VMS) lithologies. The ore mineral assemblage containing the electrum comprises dominantly galena, tennantite, bornite, sphalerite, chalcopyrite, pyrite, and rarely stromeyerite, and is defined as an Au-Zn-Pb-As-Sb association. The gangue is comprised of barite, quartz, and minor feldspathic volcanogenic sedimentary rocks and clay, comprised predominantly of kaolinite with subordinate illite. The deposition of gold as electrum in the baritic upper portions of the sulphide lenses occurs at relatively shallow water depths beneath the sea floor. Primary, pseudosecondary, and secondary fluid inclusions, petrographically related to gold, show boiling fluid inclusion assemblages in the range of 123 to 173 °C, with compositions and eutectic melt temperatures consistent with seawater at approximately 3.2 wt % NaCl equivalent. The fluid inclusion homogenization temperatures are consistent with boiling seawater corresponding to water depths ranging from 15 to 125 m. Slightly more dilute brines corresponding to salinities of approximately 1 wt % NaCl indicate that there is input from very low-salinity brines, which could represent a transition from subaqueous VMS to epithermal-like conditions for precious metal enrichment, mixing with re-condensed vapor, or very low-salinity igneous fluids.





2014 ◽  
Vol 314 (7) ◽  
pp. 1140-1170 ◽  
Author(s):  
J. Jaguin ◽  
P. Boulvais ◽  
M.- C. Boiron ◽  
M. Poujol ◽  
D. Gapais ◽  
...  


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Qihai Shu ◽  
Yong Lai

The Haisugou porphyry Mo deposit is located in the northern Xilamulun district, northeastern China. Based on alteration and mineralization styles and crosscutting relationships, the hydrothermal evolution in Haisugou can be divided into three stages: an early potassic alteration stage with no significant metal deposition, a synmineralization sericite-chlorite alteration stage with extensive Mo precipitation, and a postmineralization stage characterized by barren quartz and minor calcite and fluorite. The coexistence of high-salinity brine inclusions with low-salinity inclusions both in potassic alteration stage (~440°C) and locally in the early time of mineralization stage (380–320°C) indicates the occurrence of fluid boiling. The positive correlations between the homogenization temperatures and the salinities of the fluids and the low oxygen isotopic compositions (δ18Ofluid < 3‰) of the syn- to postmineralization quartz together suggest the mixing of magmatic fluids with meteoric water, which dominated the whole mineralization process. The early boiling fluids were not responsible for ore precipitation, whereas the mixing with meteoric water, which resulted in temperature decrease and dilution that significantly reduced the metal solubility, should have played the major role in Mo mineralization. Combined fluid inclusion microthermometry and chlorite geothermometer results reveal that ore deposition mainly occurred between 350 and 290°C in Haisugou.



2014 ◽  
Vol 96 (1) ◽  
pp. 20-26
Author(s):  
Almin Đapo ◽  
Boško Pribičević ◽  
Lidija Špiranec

Abstract In the area of carbonate or karst Dinarides, besides the dominant carbonate rocks and subordinate clastics, in more places more significant mass of chemical sediments can be found, represented by gypsum and anhydrite. As chemical sediments are specifically lighter than overlying rocks, they have been, during the long geological history, trying to achieve isostatic equilibrium, or get out on the ground surface. In recent times, in areas with chemical sediments, a larger tectonic activity is noted than in the wider environment. This is certainly reflected in increased vertical and tangential displacements along major faults in relation to the surrounding area, which are built mainly of carbonate deposits. Determining the amount of movement of diapiric bodies, as absolute and relative, using the most modern surveying methods, precisely would assist the understanding of the tectonic movements and recent structural relations in a wider area



2021 ◽  
Author(s):  
Jiaxu Chen ◽  
Xiaowen Guo

&lt;p&gt;Determining the timings of oil charge in sedimentary basins are essential to understand the evolutionary histories of petroleum systems, especially in sedimentary basins with complicated tectonic evolution and thermal histories. The Ordovician carbonate reservoir in the Tahe Oilfield, which is located in the northern Tarim Basin, comprises the largest marine reservoirs in China with reserves up to 3.2&amp;#215;10&lt;sup&gt;8&lt;/sup&gt; t. This study aims to determine the timings of oil charge in the Ordovician carbonate reservoir in the Tahe Oilfield, Tarim Basin, which basin is subjected to multiple phases of tectonic deformations and oil charge. The phases of calcite veins that contain oil inclusions were systematically investigated by cathodoluminescence observation, in situ rare earth element, C, O, and Sr isotope analyses. The homogenization temperatures of aqueous inclusions that are coeval with oil inclusions were measured to determine the timings of oil charge by combining the burial and geothermal histories. Two phases of calcite veins were judged by the differences in cathodoluminescence color, Ce anomaly, &amp;#948;&lt;sup&gt;18&lt;/sup&gt;O, and &lt;sup&gt;87&lt;/sup&gt;Sr/&lt;sup&gt;86&lt;/sup&gt;Sr values, which might be caused by variations in the water-rock interaction processes during different calcite phases. Primary oil inclusions with yellow fluorescence were observed in the two phases of calcite veins, suggesting two phases of oil charge. By combining the homogenization temperatures of aqueous inclusions with the burial and geothermal histories, the timing of phase I oil charge was inferred to be 336&amp;#8211;312 Ma, and the timing of phase II oil charge was inferred to be 237&amp;#8211;217 Ma.&lt;/p&gt;



Sign in / Sign up

Export Citation Format

Share Document