scholarly journals Cloud Physical and Climatological Factors for the Determination of Rain Intensity

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2292
Author(s):  
Bengt Dahlström

The focus of this research is to develop a general method for estimation of rain intensity for application in various geographical regions. In a world with a changing climate, a high importance is attributed to the potential threats caused by increased temperature and rainfall intensity levels. The rainfall intensity climate is here interpreted by a combination of cloud physical factors affecting rain intensity and further developed by the use of climate data and rain intensity statistics. A formula was developed that estimates extreme rainfall and the frequency of these extremes with durations in the intervals of 5 min to 24 h. The obtained estimates are compared in this article with results from statistical methods for the extreme value analysis of measurements. The comparison shows about 90% of the explained variance. The coefficients in the formula are connected with climatological predictors based on the climatological norms of temperature and rainfall. Rain intensity maps over Sweden were produced using the developed formula. Examples of the function of the formula are also given for six European countries. The application of the formula in connection with the probable maximum precipitation (PMP) is presented, where the return period of extreme rainfall is a key factor. The formula is tested with an assumed increased warming of the atmosphere of 1 to 5 °C, and the result indicates an increase of 5.9% of the rainfall amount per each warming degree in intense rainfall.

2017 ◽  
Vol 21 (10) ◽  
pp. 5385-5399 ◽  
Author(s):  
Edouard Goudenhoofdt ◽  
Laurent Delobbe ◽  
Patrick Willems

Abstract. In Belgium, only rain gauge time series have been used so far to study extreme rainfall at a given location. In this paper, the potential of a 12-year quantitative precipitation estimation (QPE) from a single weather radar is evaluated. For the period 2005–2016, 1 and 24 h rainfall extremes from automatic rain gauges and collocated radar estimates are compared. The peak intensities are fitted to the exponential distribution using regression in Q-Q plots with a threshold rank which minimises the mean squared error. A basic radar product used as reference exhibits unrealistic high extremes and is not suitable for extreme value analysis. For 24 h rainfall extremes, which occur partly in winter, the radar-based QPE needs a bias correction. A few missing events are caused by the wind drift associated with convective cells and strong radar signal attenuation. Differences between radar and gauge rainfall values are caused by spatial and temporal sampling, gauge underestimations and radar errors. Nonetheless the fit to the QPE data is within the confidence interval of the gauge fit, which remains large due to the short study period. A regional frequency analysis for 1 h duration is performed at the locations of four gauges with 1965–2008 records using the spatially independent QPE data in a circle of 20 km. The confidence interval of the radar fit, which is small due to the sample size, contains the gauge fit for the two closest stations from the radar. In Brussels, the radar extremes are significantly higher than the gauge rainfall extremes, but similar to those observed by an automatic gauge during the same period. The extreme statistics exhibit slight variations related to topography. The radar-based extreme value analysis can be extended to other durations.


Author(s):  
Erik Vanem

The extreme values of climate data are of interest in design of marine structures and the return values of certain met-ocean parameters such as significant wave height is of particular importance. However, there are various ways of analyzing the extremes and estimating the required return values, which introduce additional uncertainties. These are investigated in this paper by applying different methods to particular data sets of significant wave height, corresponding to the historic climate and two future projections of the climate assuming different forcing scenarios. In this way, the uncertainty due to the extreme value analysis can also be compared to the uncertainty due to a changing climate. The different approaches that will be considered is the initial distribution approach, the block maxima approach, the peak over threshold (POT) approach and the average conditional exceedance rate method (ACER). Furthermore, the effect of different modelling choices within each of the approaches will be explored. Thus, a range of different return value estimates for the different data sets is obtained. This exercise reveals that the uncertainty due to the extreme value analysis method is notable and, as expected, the variability of the estimates increases for higher return periods. Moreover, even though the variability due to the extreme value analysis is greater than the climate variability, a shift towards higher extremes in a future wave climate can clearly be discerned in the particular datasets that have been analysed.


2020 ◽  
Vol 104 (2) ◽  
pp. 1597-1621
Author(s):  
Carlynn Fagnant ◽  
Avantika Gori ◽  
Antonia Sebastian ◽  
Philip B. Bedient ◽  
Katherine B. Ensor

Abstract Rainfall extreme value analysis provides information that has been crucial in characterizing risk, designing successful infrastructure systems, and ultimately protecting people and property from the threat of rainfall-induced flooding. However, in the Houston region recent events (such as the unprecedented rainfall wrought by Hurricane Harvey) have highlighted the inability of existing analyses to accurately characterize current climate conditions. Specifically, there has been little research investigating how spatial patterns of extreme precipitation have shifted through time in the Texas Gulf Coast region, which has led to mis-characterization of existing intensity–duration–frequency curves. This study investigates spatiotemporal trends in extreme precipitation in southeast Texas using a statistical approach for peaks-over-threshold modeling that employs a generalized Pareto distribution. Precipitation data from over 600 rain gauges across the region are analyzed in 40-year time windows to evaluate shifts in distribution parameters and extreme rainfall levels through time. Spatial analysis of these trends focuses on highlighting regions with increasing, stationary, and decreasing extreme rainfall through time. Results demonstrate heterogeneity in spatiotemporal trends across the entire study region, but significant increases in extreme rainfall over the Houston urban area. Spatial analysis of these trends focuses on how extreme rainfall has changed within different watersheds. Return level estimates of extreme rainfall values are also compared to the current standards for Harris County. Results from this study identify areas that have experienced significant shifts in extreme rainfall, and can help inform where design standards may be inaccurate or outdated.


Author(s):  
K A Johnson ◽  
J C Smithers ◽  
R E Schulze

Frequency analysis of extreme rainfall and flood events are used to determine design rainfalls and design floods which are needed to design hydraulic structures such as dams, spillways and culverts. Standard methods for frequency analysis of extreme events are based on the assumption of a stationary climate. However, this assumption in rainfall and flood frequency analysis is being challenged with growing evidence of climate change. As a consequence of a changing climate, the frequency and magnitude of extreme rainfall events are reported to have increased in parts of South Africa, and these and other changes in extreme rainfall occurrences are expected to continue into the future. The possible non-stationarity in climate resulting in changes in rainfall may impact on the accuracy of the estimation of extreme rainfall quantities and design rainfall estimations. This may have significant consequences for the design of new hydraulic infrastructure, as well as for the rehabilitation of existing infrastructure. Hence, methods that account for non-stationary data, such as caused by climate change, need to be developed. This may be achieved by using data from downscaled global circulation models in order to identify non-stationary climate variables which affect rainfall, and which can then be incorporated into extreme value analysis of a non-stationary data series.


2006 ◽  
Vol 45 (1) ◽  
pp. 108-124 ◽  
Author(s):  
Santiago Beguería ◽  
Sergio M. Vicente-Serrano

Abstract The occurrence of rainfalls of high magnitude constitutes a primary natural hazard in many parts of the world, and the elaboration of maps showing the hazard of extreme rainfalls has great theoretical and practical interest. In this work a procedure based on extreme value analysis and spatial interpolation techniques is described. The result is a probability model in which the distribution parameters vary smoothly in space. This methodology is applied to the middle Ebro Valley (Spain), a climatically complex area with great contrasts because of the relief and exposure to different air masses. The database consists of 43 daily precipitation series from 1950 to 2000. Because rainfall tends to occur highly clustered in time in the area, a declustering process was applied to the data, and the series of daily cluster maxima were used hereinafter. The mean excess plot and error minimizing were used to find an optimum threshold value to retain the highest records (peaks-over-threshold approach), and a Poisson–generalized Pareto model was fitted to the resulting series. The at-site parameter estimates (location, scale, and shape) were regressed upon a set of location and relief variables, enabling the construction of a spatially explicit probability model. The advantages of this method to obtain maps of extreme precipitation hazard are discussed in depth.


2014 ◽  
Vol 58 (3) ◽  
pp. 193-207 ◽  
Author(s):  
C Photiadou ◽  
MR Jones ◽  
D Keellings ◽  
CF Dewes

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 502
Author(s):  
Junior Corneille Fingu-Mabola ◽  
Frédéric Francis

Aphids are responsible for the spread of more than half of the known phytovirus species. Virus transmission within the plant–aphid–phytovirus pathosystem depends on vector mobility which allows the aphid to reach its host plant and on vector efficiency in terms of ability to transmit phytoviruses. However, several other factors can influence the phytoviruses transmission process and have significant epidemiological consequences. In this review, we aimed to analyse the aphid behaviours and influencing factors affecting phytovirus spread. We discussed the impact of vector host-seeking and dispersal behaviours mostly involved in aphid-born phytovirus spread but also the effect of feeding behaviours and life history traits involved in plant–aphid–phytovirus relationships on vector performances. We also noted that these behaviours are influenced by factors inherent to the interactions between pathosystem components (mode of transmission of phytoviruses, vector efficiency, plant resistance, …) and several biological, biochemical, chemical or physical factors related to the environment of these pathosystem components, most of them being manipulated as means to control vector-borne diseases in the crop fields.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 474
Author(s):  
Huaqiao Liu ◽  
Yiren Pan ◽  
Huiguang Bian ◽  
Chuansheng Wang

In this study, the two key factors affecting the thermal performance of the insert rubber and stress distribution on the tire sidewall were analyzed extensively through various performance tests and simulations to promote the development of run-flat tires. Four compounds and two structures of insert rubber were designed to investigate the effects of heat accumulation and stress distribution on durability testing at zero pressure. It was concluded that the rigidity and tensile strength of the compound were negatively correlated with temperature. The deformation was a key factor that affects energy loss, which could not be judged solely by the loss factor. The stress distribution, however, should be considered in order to avoid early damage of the tire caused by stress concentration. On the whole, the careful balance of mechanical strength, energy loss, and structural rigidity was the key to the optimal development of run-flat tires. More importantly, the successful implementation of the simulations in the study provided important and useful guidance for run-flat tire development.


Extremes ◽  
2021 ◽  
Author(s):  
Laura Fee Schneider ◽  
Andrea Krajina ◽  
Tatyana Krivobokova

AbstractThreshold selection plays a key role in various aspects of statistical inference of rare events. In this work, two new threshold selection methods are introduced. The first approach measures the fit of the exponential approximation above a threshold and achieves good performance in small samples. The second method smoothly estimates the asymptotic mean squared error of the Hill estimator and performs consistently well over a wide range of processes. Both methods are analyzed theoretically, compared to existing procedures in an extensive simulation study and applied to a dataset of financial losses, where the underlying extreme value index is assumed to vary over time.


Sign in / Sign up

Export Citation Format

Share Document