scholarly journals Levels and Potential Health Hazards of Chlorinated Pesticides in Surface Water Samples of Charsadda Area of Pakistan Using SPME-GC-ECD Technique

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2468
Author(s):  
Muhammad Ismail ◽  
Sultan Alam ◽  
Muhammad Sufaid Khan ◽  
Luqman Ali Shah ◽  
S. M. Mukaram Shah ◽  
...  

In the present study, we determined the levels of chlorinated pesticide residues in surface water samples collected from the Charsadda district (KPK, Pakistan). SPME-GC-ECD with COMBI PAL CTC autosampler was used for extraction and analysis of 20 organochlorine pesticides in the collected water samples. For maximum efficiency of the SPME procedure, several parameters were studied, including the extraction and desorption time of the fiber, solution pH, agitation of samples, and stirring speed, etc. This method showed good liner response, with R2 values in the range of 0.9887 to 0.9999 for all pesticides. This method also provided good percent recoveries at 1 µg L−1 (87.5 to 106.0%) and at 2 µg L−1 (88.5 to 109.2%). Lower limits of detection for all 20 chlorinated pesticides were found to be lower than their maximum permissible contamination levels. Approximately 50% of the surface water samples collected from the Charsadda district were found to be contaminated with the pesticides γ-BHC, heptachlor, aldrin and dieldrin, with maximum concentrations of 0.023, 0.108, 0.014 and 0.013 µg L−1, respectively. For adults and children, the cancer risk from water due to contamination by various pesticides ranged from 0 to 33.29 × 10−6. The non-carcinogenic risk from each pollutant in the water samples of the Charsadda district was found to be in the order of heptachlor > aldrin > dieldrin > γ-BHC. However, the pesticides α-BHC, β-BHC, heptachlor epoxide, chlordane, endrin, 4,4′-DDD, endrin ketone, 4,4′-DDT, endosulfan sulfate and methoxychlor were not detected in any of the surface water samples of investigated in the present study.

Author(s):  
Irene W. Maina ◽  
Morlu G. F. Stevens ◽  
Bareki S. Batlokwa

Aims: To employ valorized waste materials from Tilapia ruweti scales for removal of heavy metals from areas with major boating activities and high numbers of jetties at the Okavango delta, Botswana. Study Design: Biowaste materials were Identified, valorized and then optimized for adsorption and removal of boating and jetty pollutants from profiled Okavango Delta surface water samples. Place and Duration of Study: Okavango Delta, Maun and Botswana International University of Science and Technology, Palapye, Botswana between March 2017 and September 2018. Methodology: Tilapia ruweti scales were collected from Sehithwa, Maun while water samples were collected from areas with jetties and major boating activities at Shakawe, Mboma Island and Xakanaxa. The concentration of Zn, Cu, Ni, Co, Pb and Cd at all the sampling sites were accurately determined using micro-plasma atomic emission spectroscopy (MPAES). The fish scales were pulverized and valorized by subjecting them to 12.7% vinegar. Minitab 14 software was used as a modeling tool to provide multivariate optimized parameters that affect sorption studies that included initial ion concentration, sorbent dose, contact time and solution pH. The valorized waste materials were then utilized for removal of the selected heavy metals. Results: The optimized adsorption parameters that included contact time, solution pH, sorbent dose and initial ion concentration were ≤ 88.63 min, ≤ 8.75, ≤ 84.29 mg and ≤ 28.44 mg/L respectively. The valorized Tilapia ruweti waste displayed high removal efficiencies toward removing the selected ions from the Okavango Delta surface water samples up to 94.21% with %RSD < 2 for n = 3 (triplicate). Conclusion: The valorized Tilapia ruweti scales were recommended as a cheap, simple and an effective method for remediation of boating pollution at the Okavango delta and other recreational areas.


2006 ◽  
Vol 6 (2) ◽  
pp. 47-53 ◽  
Author(s):  
D. Simazaki ◽  
M. Asami ◽  
T. Nishimura ◽  
S. Kunikane ◽  
T. Aizawa ◽  
...  

Nationwide surveys of 1,4-dioxane and methyl-t-butyl ether (MTBE) levels in raw water used for the drinking water supply were conducted at 91 water treatment plants in Japan in 2001 and 2002, prior to the revision of the drinking water quality standards. 1,4-dioxane was widely and continuously detected in raw water samples and its occurrence was more frequent and its concentrations higher in groundwater than in surface water. However, its maximum concentration in raw water was much lower than its new standard value (50 μg/L), which was determined as a level of 10−5 excessive cancer risk to humans. Trace levels of MTBE were also detected in several surface water samples.


Author(s):  
Kamran Bashir ◽  
Zhimin Luo ◽  
Guoning Chen ◽  
Hua Shu ◽  
Xia Cui ◽  
...  

Griseofulvin (GSF) is clinically employed to treat fungal infections in humans and animals. GSF was detected in surface waters as a pharmaceutical pollutant. GSF detection as an anthropogenic pollutant is considered as a possible source of drug resistance and risk factor in ecosystem. To address this concern, a new extraction and enrichment method was developed. GSF-surface molecularly imprinted polymers (GSF-SMIPs) were prepared and applied as solid phase extraction (SPE) sorbent. A dispersive solid phase extraction (DSPE) method was designed and combined with HPLC for the analysis of GSF in surface water samples. The performance of GSF-SMIPs was assessed for its potential to remove GSF from water samples. The factors affecting the removal efficiency such as sample pH and ionic strength were investigated and optimized. The DSPE conditions such as the amount of GSF-SMIPs, the extraction time, the type and volume of desorption solvents were also optimized. The established method is linear over the range of 0.1–100 µg/mL. The limits of detection and quantification were 0.01 and 0.03 µg/mL respectively. Good recoveries (91.6–98.8%) were achieved after DSPE. The intra-day and inter-day relative standard deviations were 0.8 and 4.3% respectively. The SMIPs demonstrated good removal efficiency (91.6%) as compared to powder activated carbon (67.7%). Moreover, the SMIPs can be reused 10 times for water samples. This is an additional advantage over single-use activated carbon and other commercial sorbents. This study provides a specific and sensitive method for the selective extraction and detection of GSF in surface water samples.


Chemosphere ◽  
2009 ◽  
Vol 77 (10) ◽  
pp. 1285-1291 ◽  
Author(s):  
Hing-Biu Lee ◽  
Thomas E. Peart ◽  
M. Lewina Svoboda ◽  
Sean Backus

2018 ◽  
Vol 319 (3) ◽  
pp. 907-916 ◽  
Author(s):  
Bhupender Singh ◽  
Krishan Kant ◽  
Maneesha Garg ◽  
Ajit Singh ◽  
B. K. Sahoo ◽  
...  

2015 ◽  
Vol 63 (1) ◽  
pp. 59-60 ◽  
Author(s):  
S Mandal ◽  
N Khuda ◽  
MR Mian ◽  
M Moniruzzaman ◽  
N Nahar ◽  
...  

Abstract not available DOI: http://dx.doi.org/10.3329/dujs.v63i1.21770 Dhaka Univ. J. Sci. 63(1): 59-60, 2015 (January)


2021 ◽  
Author(s):  
Gert-Jan Jeunen ◽  
Tatsiana Lipinskaya ◽  
Helen Gajduchenko ◽  
Viktoriya Golovenchik ◽  
Michail Moroz ◽  
...  

Active environmental DNA (eDNA) surveillance through species-specific amplification has shown increased sensitivity in the detection of non-indigenous species (NIS) compared to traditional approaches. When many NIS are of interest, however, active surveillance decreases in cost- and time-efficiency. Passive surveillance through eDNA metabarcoding takes advantage of the complex DNA signal in environmental samples and facilitates the simultaneous detection of multiple species. While passive eDNA surveillance has previously detected NIS, comparative studies are essential to determine the ability of eDNA metabarcoding to accurately describe the range of invasion for multiple NIS versus alternative approaches. Here, we surveyed twelve sites, covering nine rivers across Belarus for NIS with three different techniques, i.e., an ichthyological, hydrobiological, and eDNA survey, whereby DNA was extracted from 500 mL surface water samples and amplified with two 16S rRNA primer assays targeting the fish and macro-invertebrate biodiversity. Nine non-indigenous fish and ten non-indigenous sediment-living macro-invertebrates were detected by traditional surveys, while seven NIS eDNA signals were picked up, including four fish, one aquatic and two sediment-living macro-invertebrates. Passive eDNA surveillance extended the range of invasion further north for two invasive fish and identified a new NIS for Belarus, the freshwater jellyfish Craspedacusta sowerbii. False-negative detections for the eDNA survey could be attributed to (i) preferential amplification of aquatic over sediment-living macro-invertebrates from surface water samples and (ii) an incomplete reference database. The evidence provided in this study recommends the implementation of both molecular-based and traditional approaches to maximize the probability of early detection of non-native organisms.


Sign in / Sign up

Export Citation Format

Share Document