scholarly journals Impact of Fully Coupled Hydrology-Atmosphere Processes on Atmosphere Conditions: Investigating the Performance of the WRF-Hydro Model in the Three River Source Region on the Tibetan Plateau, China

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3409
Author(s):  
Guangwei Li ◽  
Xianhong Meng ◽  
Eleanor Blyth ◽  
Hao Chen ◽  
Lele Shu ◽  
...  

The newly developed WRF-Hydro model is a fully coupled atmospheric and hydrological processes model suitable for studying the intertwined atmospheric hydrological processes. This study utilizes the WRF-Hydro system on the Three-River source region. The Nash-Sutcliffe efficiency for the runoff simulation is 0.55 compared against the observed daily discharge amount of three stations. The coupled WRF-Hydro simulations are better than WRF in terms of six ground meteorological elements and turbulent heat flux, compared to the data from 14 meteorological stations located in the plateau residential area and two flux stations located around the lake. Although WRF-Hydro overestimates soil moisture, higher anomaly correlation coefficient scores (0.955 versus 0.941) were achieved. The time series of the basin average demonstrates that the hydrological module of WRF-hydro functions during the unfrozen period. The rainfall intensity and frequency simulated by WRF-Hydro are closer to global precipitation mission (GPM) data, attributed to higher convective available potential energy (CAPE) simulated by WRF-Hydro. The results emphasized the necessity of a fully coupled atmospheric-hydrological model when investigating land-atmosphere interactions on a complex topography and hydrology region.

1994 ◽  
Vol 116 (3) ◽  
pp. 405-416 ◽  
Author(s):  
J. Kim ◽  
T. W. Simon ◽  
M. Kestoras

An experimental investigation of transition on a flat-plate boundary layer was performed. Mean and turbulence quantities, including turbulent heat flux, were sampled according to the intermittency function. Such sampling allows segregation of the signal into two types of behavior—laminarlike and turbulentlike. Results show that during transition these two types of behavior cannot be thought of as separate Blasius and fully turbulent profiles, respectively. Thus, simple transition models in which the desired quantity is assumed to be an average, weighted on intermittency, of the laminar and fully turbulent values may not be entirely successful. Deviation of the flow identified as laminarlike from theoretical laminar behavior is due to a slow recovery after the passage of a turbulent spot, while deviation of the flow identified as turbulentlike from fully turbulent characteristics is possibly due to an incomplete establishment of the fully turbulent power spectral distribution. Measurements were taken for two levels of free-stream disturbance—0.32 and 1.79 percent. Turbulent Prandtl numbers for the transitional flow, computed from measured shear stress, turbulent heat flux, and mean velocity and temperature profiles, were less than unity.


2013 ◽  
Vol 723 ◽  
pp. 91-125 ◽  
Author(s):  
W. M. J. Lazeroms ◽  
G. Brethouwer ◽  
S. Wallin ◽  
A. V. Johansson

AbstractThis work describes the derivation of an algebraic model for the Reynolds stresses and turbulent heat flux in stably stratified turbulent flows, which are mutually coupled for this type of flow. For general two-dimensional mean flows, we present a correct way of expressing the Reynolds-stress anisotropy and the (normalized) turbulent heat flux as tensorial combinations of the mean strain rate, the mean rotation rate, the mean temperature gradient and gravity. A system of linear equations is derived for the coefficients in these expansions, which can easily be solved with computer algebra software for a specific choice of the model constants. The general model is simplified in the case of parallel mean shear flows where the temperature gradient is aligned with gravity. For this case, fully explicit and coupled expressions for the Reynolds-stress tensor and heat-flux vector are given. A self-consistent derivation of this model would, however, require finding a root of a polynomial equation of sixth-order, for which no simple analytical expression exists. Therefore, the nonlinear part of the algebraic equations is modelled through an approximation that is close to the consistent formulation. By using the framework of a$K\text{{\ndash}} \omega $model (where$K$is turbulent kinetic energy and$\omega $an inverse time scale) and, where needed, near-wall corrections, the model is applied to homogeneous shear flow and turbulent channel flow, both with stable stratification. For the case of homogeneous shear flow, the model predicts a critical Richardson number of 0.25 above which the turbulent kinetic energy decays to zero. The channel-flow results agree well with DNS data. Furthermore, the model is shown to be robust and approximately self-consistent. It also fulfils the requirements of realizability.


2018 ◽  
Vol 64 (243) ◽  
pp. 89-99 ◽  
Author(s):  
JIZU CHEN ◽  
XIANG QIN ◽  
SHICHANG KANG ◽  
WENTAO DU ◽  
WEIJUN SUN ◽  
...  

ABSTRACTWe analyzed a 2-year time series of meteorological data (January 2011–December 2012) from three automatic weather stations on Laohugou glacier No. 12, western Qilian Mountains, China. Air temperature, humidity and incoming radiation were significantly correlated between the three sites, while wind speed and direction were not. In this work, we focus on the effects of clouds on other meteorological parameters and on glacier melt. On an average, ~18% of top-of-atmosphere shortwave radiation was attenuated by the clear-sky atmosphere, and clouds attenuated a further 12%. Most of the time the monthly average increases in net longwave radiation caused by clouds were larger than decreases in net shortwave radiation but there was a tendency to lose energy during the daytime when melting was most intense. Air temperature and wind speed related to turbulent heat flux were found to suppress glacier melt during cloudy periods, while increased water vapor pressure during cloudy days could enhance glacier melt by reducing energy loss by latent heat. From these results, we have increased the physical understanding of the significance of cloud effects on continental glaciers.


2021 ◽  
Author(s):  
Achille Jouberton ◽  
Thomas E. Shaw ◽  
Evan Miles ◽  
Shaoting Ren ◽  
Wei Yang ◽  
...  

<p>Glaciers are key components of the water towers of Asia and as such are relied upon by large downstream communities for domestic, agricultural and industrial uses. They have experienced considerable shrinking over the last decades, with some of the highest rates of mass loss observed in the south-eastern part of the Tibetan Plateau, where mass loss is also accelerating.  Despite these rapid changes, Tibetan glaciers’ changing role in catchment hydrology remains largely unknown. Parlung No.4 Glacier is considered as a benchmark glacier in this region, since its meteorology, surface energy fluxes and mass-balance have been examined since 2006. It is a maritime glacier with a spring (April-May) accumulation regime , which is followed by a period of ablation during the Indian Summer Monsoon (typically June-September). Here, we conduct a glacio-hydrological study over a period of five decades (1978-2018) using a fully distributed model for glacier mass balance and runoff simulation (TOPKAPI-ETH). We force the model with ERA5-Land and China Meteorological Forcing Dataset (CMFD) climate reanalysis downscaled to a local weather station to reconstruct meteorological time series at an hourly resolution. TOPKAPI-ETH is calibrated and validated with automatic weather station data, discharge measurements, geodetic mass balance, stake measurements and snow cover data from MODIS. We find a very clear acceleration in mass loss from 2000 onwards, which is mostly explained by an increase in temperature. This influence however was initially compensated by an increase in precipitation until the 2000’s, which attenuated the negative trend. Our results also indicate that the increase in the liquid-solid precipitation ratio has reduced the amount of seasonal accumulation, exacerbating annual mass loss. We demonstrate that the southern westerlies and the associated spring precipitation have as much influence on the glacier mass balance and catchment discharge as the Indian Summer Monsoon, by controlling seasonal snowpack development, which simultaneously provides mass to the glacier and protects it from melting in the early stage of the monsoon.</p>


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2166
Author(s):  
Wang ◽  
Zhao ◽  
Chen ◽  
Zhao

The chemical composition of river water collected from the main stream of the Naqu and its tributaries was analyzed to reveal its hydrochemical characteristics and to evaluate the water quality for irrigation purposes. Based on 39 samples, the results revealed mildly alkaline pH values and total dissolved solids (TDS) values ranging from 115 to 676 mg/L, averaging 271 mg/L. Major ion concentrations based on mean values (mg/L) were in the order of Ca2+>Na+>Mg2+>K+ for cations and HCO3->SO42->Cl->CO32- for anions. Most hydrochemical types were of the Ca–HCO3 (~74.36%) type. Cluster analysis (CA) suggested that the hydrochemical characteristics upstream of the main stream of the Naqu were obviously different from those from the middle and downstream of the main stream and its tributaries. The analysis shows that the Sangqu, Basuoqu, Mumuqu, Zongqingqu, Mugequ basin tributary, and the Gongqu basin tributary were mainly affected by carbonate weathering. Carbonate and silicate weathering commonly controlled the hydrochemistry upstream and downstream of the main Naqu, Chengqu, and Mugequ streams. The middle of the main stream of the Naqu was mainly affected by silicate weathering, and anhydrite/gypsum dissolution mainly affected the hydrochemistry of the main Gongqu stream. The quality of water samples was suitable for irrigation purposes, except for one sample from the main stream of the Mugequ.


2006 ◽  
Vol 45 (1) ◽  
pp. 125-136 ◽  
Author(s):  
B. Offerle ◽  
C. S. B. Grimmond ◽  
K. Fortuniak ◽  
W. Pawlak

Abstract Surface properties, such as roughness and vegetation, which vary both within and between urban areas, play a dominant role in determining surface–atmosphere energy exchanges. The turbulent heat flux partitioning is examined within a single urban area through measurements at four locations in Łódź, Poland, during August 2002. The dominant surface cover (land use) at the sites was grass (airport), 1–3-story detached houses with trees (residential), large 2–4-story buildings (industrial), and 3–6-story buildings (downtown). However, vegetation, buildings, and other “impervious” surface coverage vary within some of these sites on the scale of the turbulent flux measurements. Vegetation and building cover for Łódź were determined from remotely sensed data and an existing database. A source-area model was then used to develop a lookup table to estimate surface cover fractions more accurately for individual measurements. Bowen ratios show an inverse relation with increasing vegetation cover both for a site and, more significant, between sites, as expected. Latent heat fluxes at the residential site were less dependent on short-term rainfall than at the grass site. Sensible heat fluxes were positively correlated with impervious surface cover and building intensity. These results are consistent with previous findings (focused mainly on differences between cities) and highlight the value of simple measures of land cover as predictors of spatial variations of urban climates both within and between urban areas.


Sign in / Sign up

Export Citation Format

Share Document