scholarly journals Nitrate Removal and Woodchip Properties across a Paired Denitrifying Bioreactor Treating Centralized Agricultural Ditch Flows

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 56
Author(s):  
Bryan Maxwell ◽  
Laura Christianson ◽  
Richard A. C. Cooke ◽  
Mary Foltz ◽  
Niranga Wickramarathne ◽  
...  

Treatment of nitrate loads by denitrifying bioreactors in centralized drainage ditches that receive subsurface tile drainage may offer a more effective alternative to end-of-pipe bioreactors. A paired denitrifying bioreactor design, consisting of an in-ditch bioreactor (18.3 × 2.1 × 0.2 m) treating ditch base flow and a diversion bioreactor (4.6 × 9.1 × 0.9 m) designed to treat high-flow events, was designed and constructed in an agricultural watershed (3.2 km2 drainage area) in Illinois, USA. Flow and water chemistry were monitored for three years and the woodchip and bioreactor-associated soil were analyzed for denitrification potential and chemical properties after 25 months. The in-ditch bioreactor did not significantly reduce nitrate concentrations in the ditch, likely due to low hydraulic connectivity with stream water and sedimentation. The diversion bioreactor significantly reduced nitrate concentrations (58% average reduction) but treated only ~2% of annual ditch flow. Denitrification potential was significantly higher in the in-ditch bioreactor woodchips versus the diversion bioreactor after 25 months (2950 ± 580 vs. 620 ± 310 ng N g−1 dry media h−1). The passive flow design was simple to construct and did not restrict flow in the drainage ditch but resulted in low hydraulic exchange, limiting nitrate removal.

2002 ◽  
Vol 6 (3) ◽  
pp. 507-514 ◽  
Author(s):  
L. Ruiz ◽  
S. Abiven ◽  
C. Martin ◽  
P. Durand ◽  
V. Beaujouan ◽  
...  

Abstract. In catchments with impervious bedrock, the nitrate concentrations in streamwater often show marked seasonal and small inter-annual variations. The inter-annual trends are usually attributed to changes in nitrogen inputs, due to changes in land use or in nitrogen deposition whereas seasonal patterns are explained in terms of availability of soil nitrate for leaching and of seasonality of nitrogen biotransformations. The companion paper showed that inter-annual variations of nitrogen in streamwater are not directly related to the variations of land use. The aim of this study is to describe nitrate concentration variations in a set of very small adjacent catchments, and to discuss the origin of the inter-annual and seasonal trends. Data from four catchments at the Kerbernez site (South Western Brittany, France) were used in this study. Nitrate concentrations in streamwater were monitored for eight years (1992 to 1999) at the outlet of the catchments. They exhibit contrasting inter-annual and seasonal patterns. An extensive survey of agricultural practices during this period allowed assessment of the amount of nitrogen available for leaching. The discharges measured since 1997 show similar specific fluxes but very different seasonal dynamics between the catchments. A simple, lumped linear store model is proposed as an initial explanation of the differences in discharge and nitrate concentration patterns between the catchments. The base flow at the outlet of each catchment is considered as a mixture of water from two linear reservoirs with different time constants. Each reservoir comprises two water stores, one mobile contributing to discharge, the other, immobile, where nitrate moves only by diffusion. The storm flow, which accounts for less than 10% of the annual flux, is not considered here. Six parameters were adjusted for each catchment to fit the observed data: the proportion of deep losses of water, the proportion of the two reservoirs and the size and initial concentration of the two immobile stores. The model simulates the discharge and nitrate concentration dynamics well. It suggests that the groundwater store plays a very important role in the control of nitrate concentration in streamwater, and that the pattern of the seasonal variation of nitrate concentration may result from the long term evolution of nitrogen losses by leaching. Keywords: nitrate, diffuse pollution, groundwater, seasonal variations, agricultural catchment, simulation model


1966 ◽  
Vol 24 ◽  
pp. 101-110
Author(s):  
W. Iwanowska

In connection with the spectrophotometric study of population-type characteristics of various kinds of stars, a statistical analysis of kinematical and distribution parameters of the same stars is performed at the Toruń Observatory. This has a twofold purpose: first, to provide a practical guide in selecting stars for observing programmes, second, to contribute to the understanding of relations existing between the physical and chemical properties of stars and their kinematics and distribution in the Galaxy.


Author(s):  
O. Popoola ◽  
A.H. Heuer ◽  
P. Pirouz

The addition of fibres or particles (TiB2, SiC etc.) into TiAl intermetallic alloys could increase their toughness without compromising their good high temperature mechanical and chemical properties. This paper briefly discribes the microstructure developed by a TiAl/TiB2 composite material fabricated with the XD™ process and forged at 960°C.The specimens for transmission electron microscopy (TEM) were prepared in the usual way (i.e. diamond polishing and argon ion beam thinning) and examined on a JEOL 4000EX for microstucture and on a Philips 400T equipped with a SiLi detector for microanalyses.The matrix was predominantly γ (TiAl with L10 structure) and α2(TisAl with DO 19 structure) phases with various morphologies shown in figure 1.


Author(s):  
Mehmet Sarikaya ◽  
Ilhan A. Aksay

Biomimetics involves investigation of structure, function, and methods of synthesis of biological composite materials. The goal is to apply this information to the design and synthesis of materials for engineering applications.Properties of engineering materials are structure sensitive through the whole spectrum of dimensions from nanometer to macro scale. The goal in designing and processing of technological materials, therefore, is to control microstructural evolution at each of these dimensions so as to achieve predictable physical and chemical properties. Control at each successive level of dimension, however, is a major challenge as is the retention of integrity between successive levels. Engineering materials are rarely fabricated to achieve more than a few of the desired properties and the synthesis techniques usually involve high temperature or low pressure conditions that are energy inefficient and environmentally damaging.In contrast to human-made materials, organisms synthesize composites whose intricate structures are more controlled at each scale and hierarchical order.


1976 ◽  
Vol 73 ◽  
pp. 351-355 ◽  
Author(s):  
Gilles Goujon ◽  
Boyan Mutaftschiev

2015 ◽  
Vol 2 (2) ◽  
pp. 148-158
Author(s):  
Surianto

Spodosol soil of Typic Placorthod sub-group of East Barito District is one of the problem soils with the presence of hardpan layer, low fertility, low water holding capacity, acid reaction and it is not suitable for oil palm cultivation without any properly specific management of land preparation and implemented best agronomic practices. A study was carried out to evaluate the soil characteristic of a big hole (A profile) and no big hole (B profile) system and comparative oil palm productivity among two planting systems. This study was conducted in Spodosol soil at oil palm plantation (coordinate X = 0281843 and Y = 9764116), East Barito District, Central Kalimantan Province on February 2014, by surveying of placic and ortstein depth and observing soil texture and chemical properties of 2 (two) oil palm's soil profiles that have been planted in five years. Big hole system of commercial oil palm field planting on the Spodosol soil area was designed for the specific purpose of minimizing the potential of a negative effect of shallow effective planting depth for oil palms growing due to the hardpan layer (placic and ortstein) presence as deep as 0.25 - 0.50 m. The big hole system is a planting hole type which was vertical-sided with 2.00 m x 1.50 m on top and bottom side and 3.00 m depth meanwhile the 2:1 drain was vertical-sided also with 1.50 m depth and 300 m length. Oil palm production was recorded from the year 2012 up to 2014. Results indicated that the fractions both big hole profile (A profile) and no big hole profile (B profile) were dominated by sands ranged from 60% to 92% and the highest sands content of non-big hole soil profile were found in A and E horizons (92%). Better distribution of sand and clay fractions content in between layers of big hole soil profiles of A profile sample is more uniform compared to the B profile sample. The mechanical holing and material mixing of soil materials of A soil profile among the upper and lower horizons i.e. A, E, B and C horizons before planting that resulted a better distribution of both soil texture (sands and clay) and chemical properties such as acidity value (pH), C-organic, N, C/N ratio, CEC, P-available and Exchangeable Bases. Investigation showed that exchangeable cations (Ca, Mg, K), were very low in soil layers (A profile) and horizons (B profile) investigated. The low exchangeable cations due to highly leached of bases to the lower layers and horizons. Besides, the palm which was planted on the big hole system showed good adaptation and response positively by growing well of tertiary and quaternary roots that the roots were penetrable into deeper rooting zone as much as >1.00 m depth. The roots can grow well and penetrate much deeper in A profile compared to the undisturbed hardpan layer (B profile). The FFB (fresh fruit bunches) production of the non-big hole block was higher than the big hole block for the first three years of production. This might be due to the high variation of monthly rainfall in-between years of observation from 2009 to 2014. Therefore, the hardness of placic and ortstein as unpenetrable agents by roots and water to prevent water loss and retain the water in the rhizosphere especially in the drier weather. In the high rainfall condition, the 2:1 drain to prevent water saturation in the oil palm rhizosphere by moving some water into the drain. Meanwhile, the disturbed soil horizon (big hole area) was drier than un disturbance immediately due to water removal to deeper layers. We concluded that both big hole and 2:1 drain are a suitable technology for Spodosol soil land especially in preparing palms planting to minimize the negative effect of the hardpan layer for oil palm growth.


2017 ◽  
pp. 31-43
Author(s):  
Berta Ratilla ◽  
Loreme Cagande ◽  
Othello Capuno

Organic farming is one of the management strategies that improve productivity of marginal uplands. The study aimed to: (1) evaluate effects of various organic-based fertilizers on the growth and yield of corn; (2) determine the appropriate combination for optimum yield; and (3) assess changes on the soil physical and chemical properties. Experiment was laid out in Randomized Complete Block Design, with 3 replications and 7 treatments, namely; T0=(0-0-0); T1=1t ha-1 Evans + 45-30-30kg N, P2O5, K2O ha-1; T2=t ha-1 Wellgrow + 45-30-30kg N, P2O5, K2O ha-1; T3=15t ha-1 chicken dung; T4=10t ha-1 chicken dung + 45-30-30kg N, P2O5, K2O ha-1; T5=15t ha-1 Vermicast; and T6=10t ha-1 Vermicast + 45-30-30kg N, P2O5, K2O ha-1. Application of organic-based fertilizers with or without inorganic fertilizers promoted growth of corn than the control. But due to high infestation of corn silk beetle(Monolepta bifasciata Horns), its grain yield was greatly affected. In the second cropping, except for Evans, any of these fertilizers applied alone or combined with 45-30-30kg N, P2O5, K2O ha-1 appeared appropriate in increasing corn earyield. Soil physical and chemical properties changed with addition of organic fertilizers. While bulk density decreased irrespective of treatments, pH, total N, available P and exchangeable K generally increased more with chicken dung application.


Sign in / Sign up

Export Citation Format

Share Document