scholarly journals Patterns of Past and Future Droughts in Permanent Lowland Rivers

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 71
Author(s):  
Serhii Nazarenko ◽  
Jūratė Kriaučiūnienė ◽  
Diana Šarauskienė ◽  
Darius Jakimavičius

The problem of droughts is acute due to climate change. The study aims to assess the temporal and spatial drought patterns in Lithuanian lowland rivers in the past and to project these phenomena according to climate scenarios and models. Drought analysis was based on Standardized Precipitation Index (SPI), Reconnaissance Drought Index (RDI) and Streamflow Drought Index (SDI). To evaluate the past patterns, the hydrometeorological data of 17 rivers were used from 1961–2020. Future drought changes were analyzed in 2021–2100 according to the selected RCPs (Representative Concentration Pathways) using the hydrological model HBV. There were different patterns of droughts in three hydrological regions of Lithuania (Western, Central and Southeastern). The Southeastern region was more prone to extreme summer hydrological droughts, and they had a shorter accumulation period compared to the other two regions. SPI and RDI indices showed that the number of dry months and the minimum value of the index increased, extending the accumulation period. The highest correlation was recorded between RDI-12/SPI-12 and SDI-12. The amplitude between extremely wet and dry values of river runoff will increase according to RCP8.5. The projections indicated that hydrological drought intensity in the Central region is expected to increase under both analyzed RCPs.

2020 ◽  
Author(s):  
Song Youngseok ◽  
Kim Jinbok ◽  
Park Jongun ◽  
Park Moojong

<p>Unlike natural disasters such as typhoons, torrential rains and floods, drought is a disaster caused by long-term effects as well as short-term effects. The effect of drought is caused by damage from a short period of weeks to a long period of years, which causes extensive and enormous damage to agriculture, life, society and economy. In addition, the recent climate change has affected the frequency and scale of rainfall in the global temperature, so it is necessary to prepare measures against it.</p><p>The past studies on drought have been conducted using drought indexes such as agricultural, meteorological, and hydrological methods to evaluate drought. The representative drought indexes for each drought are Palmer Drought Severity Index (PDSI), Standardized Precipitation Index (SPI), Agricultural drought is Crop Moisture Index (CMI), Crop Specific Drought Index (CSDI), Hydrological drought is Surface Drought Water Supply Index (SWSI), Reclamation Drought Index (RDI) and so on are used. However, these drought indices are only used as a method of predicting the depth of drought, and do not give the actual number of drought occurrences.</p><p>In this study, we want to determine the frequency of Mega-drought occurrences in consideration of the drought damage characteristics that occurred worldwide from 1900 to 2018. The drought damages in the world were used by EM-DAT (the Emergency Events Database) which manages disaster data in CRED (Centre for Research on the Epidemiology of Disasters). Drought damages occurred in the world from 1900 to 2018 occurred more than once/years in 146 countries. The duration of drought persistence occurred in the country continuously for at least one to 17 years. The purpose of this study is to propose the criteria for mega drought by using the past victim data in connection with the incidence frequency.</p><p>Acknowledges : This research was supported by a grant(2019-MOIS31-010) from Fundamental Technology Development Program for Extreme Disaster Response funded by Korean Ministry of Interior and Safety(MOIS).</p><div> </div>


2019 ◽  
Vol 50 (5) ◽  
pp. 1230-1250 ◽  
Author(s):  
Majid Dehghani ◽  
Bahram Saghafian ◽  
Mansoor Zargar

Abstract Hydrological drought forecasting is considered a key component in water resources risk management. As sustained meteorological drought may lead to hydrological drought over time, it is conceptually feasible to capitalize on the dependency between the meteorological and hydrological droughts while trying to forecast the latter. As such, copula functions are powerful tools to study the propagation of meteorological droughts into hydrological droughts. In this research, monthly precipitation and discharge time series were used to determine Standardized Precipitation Index (SPI) and Standardized Hydrological Drought Index (SHDI) at different time scales which quantify the state of meteorological and hydrological droughts, respectively. Five Archimedean copula functions were adopted to model the dependence structure between meteorological/hydrological drought indices. The Clayton copula was identified for further investigation based on the p-value. Next, the conditional probability and the matrix of forecasted class transitions were calculated. Results indicated that the next month's SHDI class forecasting is promising with less than 10% error. Moreover, extreme and severe meteorological drought classes lead to hydrological drought condition with a more than 70% probability. Other classes of meteorological drought/wet conditions lead to normal hydrological (drought) condition with less than 50% probability and to wet hydrological condition with over 20% probability.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 74 ◽  
Author(s):  
Zhaofei Liu ◽  
Zhijun Yao ◽  
Heqing Huang ◽  
Batbuyan Batjav ◽  
Rui Wang

Extreme cold and meteorological drought in the Mongolian Plateau (MP) were investigated during 1969–2017. Several drought indices were evaluated by analyzing recorded historical drought data in the Chinese region of the MP. The evaluated drought indices were then applied to detect drought characteristics in the entire MP. The trends of extreme cold indices showed that the climate of the MP has warmed during the past 49 years; however, the frequency of cold day/night has increased in the Mongolian region. The climate of Mongolia has also become colder in the spring season. The comprehensive meteorological drought index (CMDI) and the standardized precipitation index with a six-month scale (SPI6) exhibited better performances, showing high consistency between the spatial patterns of the two indices. However, drought represented by the SPI6 was enhanced greater than that expressed by the CMDI. Drought in the MP has been enhanced during the past 49 years, particularly in the Ordos and Alashan plateaus and the Xiliao River basin in China. Moreover, drought has been enhanced from August to October, particularly in the Mongolian region. However, spring drought has shown a weakening trend, which has been beneficial for agriculture and husbandry sectors in some regions of the MP.


2021 ◽  
Author(s):  
Javad Bazrafshan ◽  
Zahra Azhdari

Abstract In arid and semi-arid regions, precipitation and seasonal streamflow are the two major sources of water for vegetation. The scarcity of these water sources has a detrimental effect on vegetation cover degradation. The purpose of this research is to study the effect of meteorological and hydrological droughts, and also their combined effects, on vegetation changes in seven coastal sub-basins in southern Iran (part of the Bandar-Sedij and Kol-Mehran catchment). To track meteorological and hydrological droughts, the Standardized Precipitation Index (SPI) and the Streamflow Drought Index (SDI) were used. The copula function and the entropy approach (which is developed in this research) were used to blend individual meteorological and hydrological drought indices, yielding hybrid indices called the Copula-based Drought Index and the Entropy-based Drought Index (EnDI). The single (i.e., SPI and SDI) and hybrid drought indices (CoDI and EnDI) were compared in terms of temporal behavior, drought severity and duration characteristics, drought frequency, and a bivariate analysis of the drought severity-duration return period. The results indicated that the rank correlation (\({r}_{s}\)) between SPI and SDI ranged between 0.327 and 0.726 in the studied sub-basins. However, the two hybrid indices CoDI and EnDI had extremely high correlations (\({r}_{s}\ge 0.9\)). Despite the fact that meteorological droughts benefited both hybrid drought indices more than hydrological droughts, the contribution of meteorological droughts to EnDI was greater than that of CoDI. Over the study region, CoDI reported droughts that were both longer and more severe than those recorded by EnDI. EnDI showed stronger associations with the Normalized Vegetation Difference Index (NDVI) in nearly all the sub-basins, possibly because precipitation has a greater effect on EnDI than it does on CoDI. EnDI was therefore recommended as a superior index for estimating vegetation droughts throughout the research region.


2019 ◽  
Vol 23 (6) ◽  
pp. 913-926
Author(s):  
Kakyom Kim ◽  
Giri Jogaratnam

Research findings on generations have been becoming useful for event organizers and destination developers over the past decades. The current study investigated generational differences in exhibition dimensions, satisfaction, and future intentions along with trip characteristics of visitors to the NASCAR Hall of Fame Exhibition event held in a medium-sized city in the southeastern region of the US. Analysis confirmed the existence of six exhibition dimensions labeled as "exhibits," "staff," "facility," "concessions," "audio tours," and "hard cards" on the event. As part of the most substantial results, there were both dissimilarities and similarities in the exhibition dimensions across four generations including "Matures," "Baby Boomers," "Generation X," and "Generation Y." Analysis also suggested significant differences in exhibition visitors' overall satisfaction, future intentions, and trip characteristics across the generations. Some useful implications are discussed for exhibition event managers and organizers.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


2016 ◽  
Vol 17 (6) ◽  
pp. 1763-1779 ◽  
Author(s):  
Daniel J. McEvoy ◽  
Justin L. Huntington ◽  
Michael T. Hobbins ◽  
Andrew Wood ◽  
Charles Morton ◽  
...  

Abstract Precipitation, soil moisture, and air temperature are the most commonly used climate variables to monitor drought; however, other climatic factors such as solar radiation, wind speed, and humidity can be important drivers in the depletion of soil moisture and evolution and persistence of drought. This work assesses the Evaporative Demand Drought Index (EDDI) at multiple time scales for several hydroclimates as the second part of a two-part study. EDDI and individual evaporative demand components were examined as they relate to the dynamic evolution of flash drought over the central United States, characterization of hydrologic drought over the western United States, and comparison to commonly used drought metrics of the U.S. Drought Monitor (USDM), Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI), and the evaporative stress index (ESI). Two main advantages of EDDI over other drought indices are that it is independent of precipitation (similar to ESI) and it can be decomposed to identify the role individual evaporative drivers have on drought onset and persistence. At short time scales, spatial distributions and time series results illustrate that EDDI often indicates drought onset well in advance of the USDM, SPI, and SSI. Results illustrate the benefits of physically based evaporative demand estimates and demonstrate EDDI’s utility and effectiveness in an easy-to-implement agricultural early warning and long-term hydrologic drought–monitoring tool with potential applications in seasonal forecasting and fire-weather monitoring.


2004 ◽  
Vol 4 (3) ◽  
pp. 3249-3284 ◽  
Author(s):  
M. S. Bourqui

Abstract. An important part of extra-tropical stratosphere-to-troposphere transport occurs in association with baroclinic wave breaking and cut-off decay at the tropopause. In the last decade many studies have attempted to estimate stratosphere-troposphere exchange (STE) in such synoptic events with various methods, and more recently efforts have been put on inter-comparing these methods. However, large uncertainties remain on the sensitivities to methods intrinsic parameters, and on the best measure for STE with regard to end effects on chemistry. The goal of the present study is to address these two fundamental issues in the context of the application of a trajectory-based Lagrangian method, which has been applied in the past to climatological studies and has also been involved in inter-comparison studies, to a typical baroclinic wave breaking event. The analysis sheds light on (i) the fine mesoscale temporal and spatial structures that are associated with episodic, rapid inflows of stratospheric air into the troposphere; (ii) the spatial resolution of 1°×1° required to reasonably capture STE fluxes in such a wave breaking event; (iii) the effective removal of spurious exchange events using a threshold residence time; (iv) the relevance of residence time distributions for capturing the effective chemical forcing of STE; (v) the large differences in the temporal evolution and geographical distribution of STE fluxes across the 2 and the 4 potential vorticity unit iso-surface definitions of the tropopause.


Author(s):  
Q. Li ◽  
M. Zeng ◽  
H. Wang ◽  
P. Li ◽  
K. Wang ◽  
...  

Abstract. The Huaihe River Basin having China's highest population density (662 persons per km2) lies in a transition zone between the climates of North and South China, and is thus prone to drought. Therefore, the paper aims to develop an appropriate drought assessment approach for drought assessment in the Huaihe River basin, China. Based on the Principal Component Analysis of precipitation, evapotranspiration, soil moisture and runoff, the three latter variables of which were obtained by use of the Xin'anjiang model, a new multivariate drought index (MDI) was formulated, and its thresholds were determined by use of cumulative distribution function. The MDI, the Standardized Precipitation Index (SPI) and the self-calibrating Palmer Drought Severity Index (sc-PDSI) time series on a monthly scale were computed and compared during 1988, 1999/2000 and 2001 drought events. The results show that the MDI exhibited certain advantages over the sc-PDSI and the SPI in monitoring drought evolution. The MDI formulated by this paper could provide a scientific basis for drought mitigation and management, and references for drought assessment elsewhere in China.


Sign in / Sign up

Export Citation Format

Share Document