scholarly journals Isotopic Assessment of Groundwater Salinity: A Case Study of the Southwest (SW) Region of Punjab, India

Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 133
Author(s):  
Gopal Krishan ◽  
Mavidanam Someshwar Rao ◽  
Rajesh Vashisht ◽  
Anju Chaudhary ◽  
Jaswant Singh ◽  
...  

In recent decades, due to rapid increases in water demand and greater usage of water for irrigation from surface canals, waterlogging problems have been created in the southwest zone of Punjab, coupled with a stagnation in saline zone formation due to salinity ingression. To understand these salinity issues, the present study has been conducted in three districts (Muktsar, Fazilka, and Faridkot) of Punjab to understand the root cause. To this end, groundwater samples were collected from 142 piezometers developed at 40 sites. Electrical conductivity (EC) observations were taken in the field, and collected samples were analyzed for isotopes in the laboratory. Results found that salinity in groundwater arises from the combination of evaporation enrichment and salt dissolution. The dissolved salts may be acquired due to salts from aquifer materials or salts from surface soils dissolving and leaching down with the recharging water. Besides, the zone of interaction is mapped using stable isotopic composition. The study suggests that zone of interaction between aquifers can be effectively used in groundwater augmentation, management, and contamination control at regional and/or global scales to curb water demand in the future.

Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 392 ◽  
Author(s):  
Mustafa Eissa ◽  
Hosam Shawky ◽  
Amira Samy ◽  
Mostafa Khalil ◽  
Mohamed El Malky

El Dabaa city is located along the northwestern coast ridge zone of Egypt, where the groundwater is the major water source for drinking, domestic, and agricultural purposes. The groundwater salinity increased over the last decades, therefore, geochemical techniques and environmental isotopes have been utilized to identify the main groundwater recharge and salinization sources. The study area comprises two main groundwater aquifers: the porous oolitic Pleistocene and the fractured limestone Miocene aquifers. The groundwater salinity of the Pleistocene aquifer ranges from 751 to 27,870 mg/L, with an average value of 6006 mg/L. The salinity of the Miocene aquifer ranges from 3645 to 41,357 mg/L, with an average value of 11,897 mg/L. Fresh and brackish groundwater have been recorded in the shallow hand-dug wells, while saline groundwater has been found in deeper wells close to the shoreline. Groundwater samples have been categorized into two distinct groups according to the salinity ranges, hydrochemical ion ratios, and stable isotopic content. Group I is composed of groundwater with salinity less than 10,000 mg/L, and depleted stable isotopic content (−5.64 < δ18O < −2.45; −23.5 < δ2H < −0.02), while Group II contains groundwater with salinity values above 10,000 mg/L and relatively enriched stable isotopic content (−1.86 < δ18O < −0.48; −10.3 < δ2H < −2.0). The weight mass balance mixing model shows that Group I falls close to the rain and/or water extract samples, indicating meteoric water origin that has evolved due to leaching and dissolution processes. Group II is mostly located between the rainwater and the seawater samples, revealing mixing with water of marine origin due to groundwater overexploitation. The estimated seawater mixing index (SMI) of groundwater samples of Group II is greater than one, which confirms mixing with seawater. The water-rock reaction NETPATH (geochemical groundwater reaction and mixing code) model scenarios representing Group I suggests that gypsum, dolomite, and halite are dissolved, while calcite is formed with a slight influence from evaporation processes. Six mixing models representing Group II are used to investigate seawater mixing scenarios. The models suggest that illite and dolomite are dissolved, while calcite and gypsum are precipitated with a seawater mixing ratios ranging from 28% to 98%. In conclusion, due to the scarcity of annual groundwater recharge in the El Dabaa area, groundwater withdrawal should be well managed to avoid groundwater salinization and further seawater intrusion.


2018 ◽  
Author(s):  
Sneta Mishra ◽  
Daniel R. Bockelman
Keyword(s):  

Abstract A case study is presented of a core CPU product where FA/FI debug is performed for an ESD-related pin leakage issue on an IO family to root cause and qualify the product. A Powered TIVA technique is used to localize the damage to the termination resistor circuitry of the affected IO block when the pin is tristated using a device tester. Failure characterization shows a gate to drain short on the transistor, with nanoprobing confirming a solid short on gate to drain and TEM finding a short at the location indicated by the TIVA hits.


Author(s):  
Jun-Xian Fu ◽  
Shukri Souri ◽  
James S. Harris

Abstract Temperature and humidity dependent reliability analysis was performed based on a case study involving an indicator printed-circuit board with surface-mounted multiple-die red, green and blue light-emitting diode chips. Reported intermittent failures were investigated and the root cause was attributed to a non-optimized reflow process that resulted in micro-cracks and delaminations within the molding resin of the chips.


Author(s):  
Martin Versen ◽  
Dorina Diaconescu ◽  
Jerome Touzel

Abstract The characterization of failure modes of DRAM is often straight forward if array related hard failures with specific addresses for localization are concerned. The paper presents a case study of a bitline oriented failure mode connected to a redundancy evaluation in the DRAM periphery. The failure mode analysis and fault modeling focus both on the root-cause and on the test aspects of the problem.


Author(s):  
Michael Woo ◽  
Marcos Campos ◽  
Luigi Aranda

Abstract A component failure has the potential to significantly impact the cost, manufacturing schedule, and/or the perceived reliability of a system, especially if the root cause of the failure is not known. A failure analysis is often key to mitigating the effects of a componentlevel failure to a customer or a system; minimizing schedule slips, minimizing related accrued costs to the customer, and allowing for the completion of the system with confidence that the reliability of the product had not been compromised. This case study will show how a detailed and systemic failure analysis was able to determine the exact cause of failure of a multiplexer in a high-reliability system, which allowed the manufacturer to confidently proceed with production knowing that the failure was not a systemic issue, but rather that it was a random “one time” event.


Author(s):  
Zhigang Song ◽  
Jochonia Nxumalo ◽  
Manuel Villalobos ◽  
Sweta Pendyala

Abstract Pin leakage continues to be on the list of top yield detractors for microelectronics devices. It is simply manifested as elevated current with one pin or several pins during pin continuity test. Although many techniques are capable to globally localize the fault of pin leakage, root cause analysis and identification for it are still very challenging with today’s advanced failure analysis tools and techniques. It is because pin leakage can be caused by any type of defect, at any layer in the device and at any process step. This paper presents a case study to demonstrate how to combine multiple techniques to accurately identify the root cause of a pin leakage issue for a device manufactured using advanced technology node. The root cause was identified as under-etch issue during P+ implantation hard mask opening for ESD protection diode, causing P+ implantation missing, which was responsible for the nearly ohmic type pin leakage.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 683
Author(s):  
Birte Moser ◽  
Meruyert Beknazarova ◽  
Harriet Whiley ◽  
Thilini Piushani Keerthirathne ◽  
Nikki Harrington ◽  
...  

Iron-related clogging of boreholes, pumps and dripper lines is a significant and costly problem for irrigators worldwide. The primary cause of iron-related clogging is still debated. Previous studies have described complex interactions between biological clogging and inorganic iron/manganese oxide precipitation. This case study examined groundwater bores used for viticulture irrigation in the Limestone Coast region, a highly productive wine growing area in the SE of South Australia. Iron clogging of bore screens, pumps and dripper systems has been a persistent problem in the region and the issue is perceived to be growing, with irrigators suggesting the widespread introduction of iron-related bacteria (IRB) through drilling equipment to be the root cause of the problem. Analysis of the groundwater microbiology and inorganic chemistry found no apparent correlation between the presence of IRB and the clogging status of wells. In fact, IRB proved to be widespread throughout the limestone aquifer. However, a clear correlation could be found between clogging affected bores and the redox potential of the groundwater with the most severely affected bores strongly oversaturated in respect to iron oxide minerals. Elevated dissolved concentrations of Fe(II) thereby tended to be found in deeper bores, which also were generally more recently drilled. Following decades of less than average rainfall, a tendency to deepen bores in response to widespread declines in water levels has been documented for the SE of South Australia. The gradually widening clogging problem in the region is postulated to be related to the changes in climate in the region, with irrigators increasingly driven to rely on deeper, anoxic iron-rich groundwater resources.


Author(s):  
Nor Najwa Irina Mohd Azlan ◽  
Marlinda Abdul Malek ◽  
Maslina Zolkepli ◽  
Jamilah Mohd Salim ◽  
Ali Najah Ahmed

2010 ◽  
Vol 30 (1) ◽  
pp. 62-65
Author(s):  
Naveed Ramzan ◽  
Shahid Naveed ◽  
Muhammad Rizwan ◽  
Werner Witt

Sign in / Sign up

Export Citation Format

Share Document