scholarly journals Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste in Plug-Flow Reactors: Focus on Bacterial Community Metabolic Pathways

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 195
Author(s):  
Elena Rossi ◽  
Simone Becarelli ◽  
Isabella Pecorini ◽  
Simona Di Gregorio ◽  
Renato Iannelli

The aim of this study is to investigate the performance of a pilot-scale plug-flow reactor (PFR) as a biorefinery system to recover chemicals (i.e., volatile fatty acids (VFAs)), and biogas during the dry thermophilic anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). The effects of the hydraulic retention time (HRT) on both outputs were studied, reducing the parameter from 22 to 16 days. In addition, VFA variation along the PFR was also evaluated to identify a section for a further valorization of VFA-rich digestate stream. A particular focus was dedicated for characterizing the community responsible for the production of VFAs during hydrolysis and acidogenesis. The VFA concentration reached 4421.8 mg/L in a section located before the end of the PFR when the HRT was set to 16 days. Meanwhile, biogas production achieved 145 NLbiogas/d, increasing 2.7 times when compared to the lowest HRT tested. Defluviitoga sp. was the most abundant bacterial genus, contributing to 72.7% of the overall bacterial population. The genus is responsible for the hydrolysis of complex polysaccharides at the inlet and outlet sections since a bimodal distribution of the genus was found. The central zone of the reactor was distinctly characterized by protein degradation, following the same trend of propionate production.

2021 ◽  
Vol 238 ◽  
pp. 01007
Author(s):  
Elena Rossi ◽  
Isabella Pecorini ◽  
Renato Iannelli

The hydraulic retention time (HRT) is a key parameter in dry-anaerobic digestion to set during the reactor configuration in order to achieve the optimal biogas production. For this reason, the study compared the results of two experimental tests operating with an HRT of 23 and 14 days. During the tests, the feedstock was organic fraction of municipal solid waste with a solid content of 33% and the digester was a pilot-scale plug-flow reactor operating in thermophilic condition. The highest specific biogas production of 311.91 Nlbiogas kg-1 d-1 was achieved when the HRT was set to 23 days. On the contrary, the highest methane production rate of 1.43 NlCH4 l-1 d-1 was achieved for an HRT of 14 days. In addition, the volatile solids removal (49.15% on average) and the energy content o(4.8 MJ kg-1 on average) were higher for HRT 23 days than for HRT14 days. The results indicated that in dry-anaerobic digestion of organic fraction of municipal solid waste, 23 days is a suitable HRT for energy recovery.


1993 ◽  
Vol 27 (2) ◽  
pp. 201-208 ◽  
Author(s):  
E. D. Negri ◽  
J. Mata-Alvarez ◽  
C. Sans ◽  
F. Cecchi

A mathematical model of a plug-flow reactor with a fluid recycle has been elaborated to simulate the VFA production process treating the organic fraction of the municipal solid waste. An alternative hydrolytic reaction model (homogeneous - heterogeneous) is proposed. The effect of a possible methanization step is also considered. The effect of process parameters (solid retention time (SRT), pH, recycle ratio) on the reactor performance is analyzed for parameters based on fruit and vegetable waste. The sensitivity of the model to proposed parameters (suspended biomass and initial biomass concentration) is also evaluated. It is found that the reactor production is very sensitive to the system pH. At low SRT, the production of volatile fatty acids (VFA) is proportional to this parameter. As the SRT increases methanization can reduce the VFA production. The effect of the recycle is negligible for the system and operating conditions studied. The effect of suspended biomass and initial biomass concentration was found to be also negligible. For the system analyzed, the pH is a critical parameter and a plug-flow arrangement (without recycle) seems to be the more reasonable election.


1993 ◽  
Vol 27 (2) ◽  
pp. 183-192 ◽  
Author(s):  
E. D'Addario ◽  
R. Pappa ◽  
B. Pietrangeli ◽  
M. Valdiserri

Several reactors were tested for the anaerobic conversion of the organic fraction of municipal solid waste into volatile fatty acids. The reactors examined included Batch, Semi-Continuous Stirred Tank Reactor and Multistage-Counter Flow Reactor. After reasonable retention times (12 days), Batch systems operating at 15% w/v of dry matter and under pH controlled at 6.5, gave better performances both in terms of total Volatile Fatty Acids (VFA) concentration (23-24 g/l) and conversion yield (215 g VFA/kg volatile solids). However, these conditions of reaction caused a high level of liquefaction of the feedstock which resulted in a difficult down-stream processing. On the contrary, the acidogenesis under uncontrolled pH, allowed the production of leachates directly processable for acids recovery. Based on this reason, the Multistage-Counter Flow Reactor, operating under uncontrolled pH, appeared to be the most promising system. The leachate obtained from such a system was processed to obtain mixtures of C2-C7 methyl esters, potentially usable as octane enhancers. The digested solid was intended to be dried and refined to obtain soil amendment. A process for the treatment of municipal solid waste based on the previous steps and including conventional sorting facilities and units for the incineration of all residual solids, was evaluated to be economically comparable with landfilling. The revenues from the sales of esters and fertilizers were highly sensitive to the yield of the acidogenic step and to the value and the amount of the derived fertilizer. Further research is still in progress to improve the economics of the process. The activities are addressed to study proper procedures for the improvement of the down-stream processing of the mixtures originating from acidogenesis under almost neutral pH.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 197
Author(s):  
Alessio Siciliano ◽  
Carlo Limonti ◽  
Giulia Maria Curcio

The organic fraction resulting from the separate collection of municipal solid waste (OFMSW) is an abundant residue exploitable for biofuel production. Anaerobic digestion (AD) is one of the most attractive technologies for the treatment of organic wastes thanks to the generation of biogas with a high methane content. However, because of its complex composition, the direct digestion of OFMSW can be less effective. To overcome these difficulties, many pretreatments are under development. In this work, the efficacy of alkaline hydrogen peroxide (AHP) oxidation was assessed for the first time as a pretreatment of OFMSW to enhance its anaerobic biodegradability. In this regard, many AHP batch tests were executed at pH 9 and by changing the peroxide dosages up to 1 gH2O2/gCOD, under room temperature and pressure conditions. Afterwards, biomethane potential tests (BMP) were conducted to evaluate the performance of anaerobic digestion both on raw and pretreated OFMSW. The pretreatment tests demonstrated that AHP induces only a weak reduction in the organic load, reaching a maximum COD removal of about 28%. On the other hand, notable productions of volatile fatty acids (VFA) were found. In fact, by applying a peroxide dose of just 0.025 gH2O2/gCOD, there was a doubling in VFA concentration, which increased by five times with the highest H2O2 amount. These results indicate that AHP mainly causes the conversion of complex organic substrates into easily degradable compounds. This conversion made it possible to achieve much better performance during the BMP tests conducted with the pretreated waste compared to that carried out on fresh OFMSW. Indeed, a low methane production of just 37.06 mLCH4/gTS was detected on raw OFMSW. The cumulated CH4 production in the pretreated samples increased in response to the increase in H2O2 dosage applied during AHP. Maximum specific productions of about 463.7 mLCH4/gTS and 0.31 LCH4/gCODremoved were calculated on mixtures subjected to AHP. On these samples, the satisfactory evolution of AD was confirmed by the process parameters calculated by modeling the cumulated CH4 curves through a new proposed formulation of the Gompertz equation.


2013 ◽  
Vol 295-298 ◽  
pp. 1834-1839
Author(s):  
Jian Chang Li ◽  
Ya Ge Yuan ◽  
Juan He ◽  
Rui Xu

Hydrolytic enzymes, which are very key enzymes in hydrolytic step of anaerobic digestion, have an important effect on substrate hydrolysis and biogas production. To research those effect, this paper have investigated the relationship between lipase activity and biogas rate with organic fraction of municipal solid waste (OFMSW) as substrate, at the mesophilic temperature and batch fermentation. The results showed that in the process of AD, the curve of lipase activity was similar as that of biogas rate. With the increase and drop of enzyme activity, biogas rate increased and dropped. When biogas rate was at its peak period, enzyme activity of lipase was at its peak period, too.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 475
Author(s):  
Omid Norouzi ◽  
Animesh Dutta

With the implementation of new policies supporting renewable natural gas production from organic wastes, Canada began replacing traditional disposal methods with highly integrated biogas production strategies. Herein, data from published papers, Canadian Biogas Association, Canada’s national statistical agency, and energy companies’ websites were gathered to gain insight into the current status of anaerobic digestion plants in recovering energy and resource from organic wastes. The availability of materials prepared for recycling by companies and local waste management organizations and existing infrastructures for municipal solid waste management were examined. Governmental incentives and discouragements in Canada and world anaerobic digestion leaders regarding organic fraction municipal solid waste management were comprehensively reviewed to identify the opportunities for developing large-scale anaerobic digestion in Canada. A range of anaerobic digestion facilities, including water resource recovery facilities, standalone digesters, and on-farm digesters throughout Ontario, were compared in terms of digestion type, digester volume, feedstock (s), and electricity capacity to better understand the current role of biogas plants in this province. Finally, technology perspectives, solutions, and roadmaps were discussed to shape the future in terms of organic fraction municipal solid waste management. The findings suggested that the biogas industry growth in Canada relies on provincial energy and waste management policies, advanced technologies for diverting organic waste from landfills, improving biogas yield using existing pretreatment methods, and educating farmers regarding digester operations.


2008 ◽  
Vol 57 (7) ◽  
pp. 1073-1077 ◽  
Author(s):  
L. De Baere

Anaerobic digestion of residual municipal solid waste (MSW) has become more important than the digestion of source separated biowaste. More than 52% of the capacity available in Europe was designed for digestion of residual municipal waste by the end of 2006, while this was only 13% in 1998. Partial digestion of residual waste organics, by which only a part of the organics is digested, has been implemented to reduce the need for dewatering and subsequent wastewater treatment. The digestate coming from part of the organics is immediately mixed with the non-digested organic fraction. This organic fraction is drier and still contains a lot of energy which can be used to dry the digestate during the aerobic composting of the mixture of digested and undigested organics. Such a MBT-plant has been operating for over a year whereby 2/3 of the organics (including sludge cake) are digested (25,000 t/year) and mixed after digestion with the remaining 1/3 of the organics. Biogas production averages 125.7 Nm2 per ton fed and contained 56.2% of methane. The mixture of digestate and non-digested organics is aerated in tunnels during 4 to 6 weeks. The stabilized endproduct is landfilled, meeting the stringent German standards for inert landfills. By using a dry fermentation able to produce a digestate at 35% solids, there is no need for dewatering the digestate so that no wastewater is produced.


2006 ◽  
Vol 53 (8) ◽  
pp. 7-22 ◽  
Author(s):  
H. Hartmann ◽  
B.K. Ahring

Different process strategies for anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) are reviewed weighing high-solids versus low-solids, mesophilic versus thermophilic and single-stage versus multi-stage processes. The influence of different waste characteristics such as composition of biodegradable fractions, C:N ratio and particle size is described. Generally, source sorting of OFMSW and a high content of food waste leads to higher biogas yields than the use of mechanically sorted OFMSW. Thermophilic processes are more efficient than mesophilic processes in terms of higher biogas yields at different organic loading rates (OLR). Highest biogas yields are achieved by means of wet thermophilic processes at OLRs lower than 6 kg-VS·m−3 d−1. High-solids processes appear to be relatively more efficient when OLRs higher than 6 kg-VS·m−3 d−1 are applied. Multi-stage systems show in some investigations a higher reduction of recalcitrant organic matter compared to single-stage systems, but they are seldom applied in full-scale. An extended cost-benefit calculation shows that the highest overall benefit of the process is achieved at an OLR that is lower and a hydraulic retention time (HRT) that is longer than those values of OLR and HRT, at which the highest biogas production is achieved.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 213
Author(s):  
Adolfo Le Pera ◽  
Miriam Sellaro ◽  
Massimo Migliori ◽  
Micaela Bianco ◽  
Giuseppe Zanardi

In this paper, performance analysis over two years’ operation of an industrial anaerobic digestion (AD) plant of a separately collected organic fraction of municipal solid waste is presented. The continuous plug-flow AD plant is still regularly operating and it has been fully operational since September 2018. Since then, it has been supplied with 40,000 t/y of pretreated separately collected organic fraction of municipal solid waste from municipalities of the Calabria region in Southern Italy. The AD process is carried out in a mesophilic regime at 40 ± 0.5 °C, using a constant hydraulic retention time (HRT) of 22 days and a substrate with average total solids and average total volatile solids of 30.0% and 22.2%, respectively. In the last two years, the plant produced an average of 191 m3 and 860 m3 of biogas per tonne (t) of organic input material and of total volatile solids, respectively, with an average methane specific production of 508 m3/t (total volatile solids). The average CH4 percentage in the biogas was of 59.09%. The obtained results came out from the combination of high organic content of separately collected organic fraction of municipal solid waste, optimized pretreatment system and operating conditions adopted.


Sign in / Sign up

Export Citation Format

Share Document