scholarly journals Investigating the Attitude of Domestic Water Use in Urban and Rural Households in South Africa

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 210
Author(s):  
Prince Obinna Njoku ◽  
Olatunde Samod Durowoju ◽  
Solomon Eghosa Uhunamure ◽  
Rachel Makungo

South Africa is a semi-arid, water-stressed country. Adequate measures should be put in place to prevent water wastage. This paper aims to assess domestic water wastage and determine the proper attitude towards household water management in rural and urban communities in South Africa. This study was conceptualised in two stages. Firstly, critical observations were used to examine the attitude of households towards water usage in both urban and rural communities (Durban and Thohoyandou, respectively). Secondly, structured questionnaires and interviews were used to identify the factors that influenced the participants’ attitudes towards domestic water usage. This study concludes that, irrespective of the literacy level, accessibility to limited water supply, information available through advertisements about water scarcity, and better water management in an urban community, the rural community has a better attitude towards domestic water usage and water management. The result (83.3%) also indicated that the rural community strongly agreed to be water savers in their homes. However, in the urban community, the results from the participants were somewhat evenly distributed; the participants strongly agreed and disagreed at 36.2% and 32.2%, respectively. Other results of the study also showed that variables such as family upbringing, inaccessibility of domestic water, and advertisement play a major role in influencing the attitude of the rural community to water usage. These variables were statistically significant at p < 0.001. However, the immediate environment was shown to be not statistically significant at p < 0.911. Based on the study results, it is recommended that households should be encouraged to generate greywater collection systems to reduce water use and improve water reuse. The government could introduce a rationed allocation (shedding) of domestic water in urban communities to draw attention to the prevalence of water scarcity in the nation.

Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2868
Author(s):  
Brian D. Richter ◽  
Kendall Benoit ◽  
Jesse Dugan ◽  
Gabriella Getacho ◽  
Natalie LaRoe ◽  
...  

Many cities in the western US face difficult challenges in trying to secure water supplies for rapidly growing urban populations in the context of intensifying water scarcity. We obtained annual data from urban water utilities across the western US to document trends in their water usage and service populations. We found that many cities have been able to accommodate population increases while simultaneously reducing their volume of water use, thereby decoupling growth from water use. This outcome is largely attributable to reductions in per-capita residential use. We identify additional untapped potential that can sustain and widen this decoupling for many cities.


2009 ◽  
Vol 13 (10) ◽  
pp. 1967-1977 ◽  
Author(s):  
J. M. Dabrowski ◽  
E. Masekoameng ◽  
P. J. Ashton

Abstract. The concept of virtual water encourages a country to view agricultural crops in terms of the amount of water required to produce those crops, with a view to implementing trading policies that promote the saving of scarce water resources. Recently, increased attention has focussed on partitioning the virtual water content of crops into green and blue water (derived from rainfall and irrigation, respectively) as the latter has higher opportunity costs associated with its use and therefore impacts directly on scarcity. Maize is the most important crop traded within the SADC region. South Africa is the largest producer and exporter of maize, with the majority of its exports destined for other SADC countries. In comparison to other SADC countries, South Africa produces maize relatively efficiently, with a low virtual water content and a high green (868 m3 t−1) to blue (117 m3 t−1) water ratio. The blue water content is however higher than for maize produced in all other SADC countries, with the exception of Namibia (211 m3 t−1). Current trade patterns therefore result in a net expenditure of blue water (66×106 m3), almost all of which is exported by South Africa (65×106 m3). South Africa is one of the most water scarce countries in the region and analysis of virtual water flows indicates that current SADC maize trading patterns are influenced by national productivity as opposed to water scarcity. The virtual water content of maize was estimated for each of South Africa's nineteen Water Management Area's (WMA) and used as a proxy to represent water use efficiency for maize production. The virtual water content varied widely across all of the WMAs, ranging from 360 m3 t−1 in the Ustutu Mhlatuze to 1000 m3 t−1 in the Limpopo. A comparison of the virtual water content and production of maize (expressed as a percentage of the total national production) identified those WMAs where maize production is highly water inefficient (e.g. Lower Orange and Limpopo WMAs). Results suggest that, while a national estimate of the virtual water content of a crop may indicate a relatively efficient use of water, an analysis of the virtual water content at smaller scales can reveal inefficient use of water for the same crop. Therefore, analysis of the virtual water content of crops and trading of agricultural products at different spatial scales (i.e. regional, national and WMA) could be an important consideration within the context of water allocation, water use efficiency and alleviation of water scarcity.


2012 ◽  
Vol 9 (12) ◽  
pp. 13879-13932 ◽  
Author(s):  
N. Hanasaki ◽  
S. Fujimori ◽  
T. Yamamoto ◽  
S. Yoshikawa ◽  
Y. Masaki ◽  
...  

Abstract. A novel global water scarcity assessment for the 21st century is presented in a two-part paper. In this first paper, water use scenarios are presented for the latest global hydrological models. The scenarios are compatible with the socio-economic scenarios of the Shared Socio-economic Pathways (SSPs), which are a part of the latest set of scenarios on global change developed by the integrated assessment, IAV (climate change impact, adaptation, and vulnerability assessment), and climate modeling community. The SSPs depict five global situations based on substantially different socio-economic conditions during the 21st century. Water use scenarios were developed to reflect the key concepts underpinning each situation. Each scenario consists of five factors: irrigation area, crop intensity, irrigation efficiency, industrial water withdrawal, and municipal water withdrawal. The first three factors are used to estimate agricultural water withdrawal. All factors were developed using simple models based on a literature review and analysis of historical records. The factors are grid-based at a spatial resolution of 0.5° × 0.5° and cover the whole 21st century at 5-yr intervals. Each factor displays a wide variation among the different global situations depicted: the irrigation area in 2085 varies between 270 and 450 km2, industrial water between 246 and 1714 km3 yr−1, and domestic water withdrawal between 573 and 1280 km3 yr−1. The water use scenarios can be used for global water scarcity assessments by identifying the regions vulnerable to water scarcity and analyzing the timing and magnitude of scarcity conditions.


2020 ◽  
Vol 13 (11) ◽  
pp. 255
Author(s):  
Rakesh Gupta ◽  
Kejia Yan ◽  
Tarlok Singh ◽  
Di Mo

Global warming, while increasing human demand for water, is reducing water availability by reducing runoff flows and the effective amount of water between seasons, making water scarcity a growing problem globally. Water management plays an important role in mitigating global warming, improving the water cycle, reducing carbon emissions, and providing clean energy, and pricing water is considered a good approach to water management. Pricing water needs to take into account all sectors and aspects of society, such as domestic water, food and agriculture, energy, transport, industry, urban provision, human health, ecosystems, and the environment, and their interrelationships through water, within the context of the fundamental human rights to water and sanitation. This requires that every stakeholder should contribute to the development of water-related policies at every stage of the water interrelationship. This study investigated the relationship between water demand across different sectors of the economy using indicators for China, Australia, Japan, and the UK. Using panel analyses, this study finds that economic growth and population expansion increases the demand for water in all aspects. These findings have significant policy implications for water management. Because water prices can have an impact on global trade and, more importantly, are a major solution to global warming, water management policies should be considered at the global level, not only at the national level.


2021 ◽  
pp. SP517-2020-129
Author(s):  
Violaine Bault ◽  
Laurence Gourcy ◽  
Lise Cary ◽  
Anne Winckel ◽  
Bernard Bourgine

AbstractWater resource management is a major concern in Marquenterre, a maritime plain located in the western part of the department of Somme. Water management is particularly indispensable for protecting wetlands in Marquenterre, regulating water usage, and avoiding saline intrusion into aquifers.Various approaches including geologic modeling and hydrogeological and hydrogeochemical studies were used to prepare a conceptual model of the Marquenterre hydrosystem and to provide better water management in this sector.The conceptual model shows that the chalk aquifer and the various Quaternary deposits aquifers are in hydrogeologic continuity. No seawater intrusion has been discovered in groundwater. Salinization discovered at depth is a result of the most recent marine transgressions. Finally, wetlands are primarily supplied by the chalk groundwater or by rainfall.The study results are used to direct policies of surface and subsurface water resource management. The proposed conceptual model may be useful for other coastal aquifers in the English Channel to address challenges of managing the chalk groundwater and backshore swamps.


2018 ◽  
Vol 114 (3/4) ◽  
Author(s):  
Megan J. Cole ◽  
Richard M. Bailey ◽  
James D.S. JCullis ◽  
Mark G. New

Water is fundamental to human well-being and economic growth. Measuring how water contributes to sustainable development is an important aspect of the United Nations Sustainable Development Goal (SDG) 6, ‘Water and sanitation for all’. This importance is especially significant for water-scarce developing countries such as South Africa. Appropriate indicators can support decision-making and highlight key issues on inequality, unemployment and sustainability. In this paper, additional indicators for SDG 6.4 on water-use efficiency are proposed that focus on how individuals and households benefit, both directly and indirectly, from the allocations and use of water resources. The Berg Water Management Area (WMA) in the southwest corner of South Africa is used as a case study to illustrate the results. Residential per capita water use and municipal water losses were determined for all towns in the area. Figures for jobs and income per unit of water use were calculated for the heavily water-dependent industries, namely, agriculture, agriprocessing, freshwater aquaculture, mining and steel processing. This approach to measuring the socio-economic benefits of water use are relevant for other countries seeking to measure the role that water plays in achieving inclusive sustainable development, and could be included in the final SDG 6 indicator suite.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1230 ◽  
Author(s):  
Maria do Rosário Cameira ◽  
Luís Santos Pereira

The main challenge faced by agriculture is to produce enough food for a continued increase in population, however in the context of ever-growing competition for water and land, climate change, droughts and anthropic water scarcity, and less-participatory water governance. Such a context implies innovative issues in agricultural water management and practices, at both the field and the system or the basin scales, mainly in irrigation to cope with water scarcity, environmental friendliness, and rural society welfare. Therefore, this special issue was set to present and discuss recent achievements in water, agriculture, and food nexus at different scales, thus to promote sustainable development of irrigated agriculture and to develop integrated approaches to water and food. Papers cover various domains including: (a) evapotranspiration and crop water use; (b) improving water management in irrigated agriculture, particularly irrigation scheduling; (c) adaptation of agricultural systems to enhance water use and water productivity to face water scarcity and climate change; (d) improving irrigation systems design and management adopting multi-criteria and risk approaches; (e) ensuring sustainable management for anthropic ecosystems favoring safe and high-quality food production, as well as the conservation of natural ecosystems; (f) assessing the impact of water scarcity and, mainly, droughts; (g) conservation of water quality resources, namely by preventing contamination with nitrates; (h) use of modern mapping technologies and remote sensing information; and (i) fostering a participative and inclusive governance of water for food security and population welfare.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 593
Author(s):  
Avela Pamla ◽  
Gladman Thondhlana ◽  
Sheunesu Ruwanza

Households in many cities worldwide consume substantial amounts of water, but increasing aridity will result in serious water supply challenges in the future. In South Africa, droughts are now a common phenomenon, with severe implications on water supply for urban households. Developing interventions to minimise the impacts of drought requires understanding of users’ perceptions of water scarcity, water use practices, and participation in water conservation practices. Using household surveys across different income groups (low, medium, and high) in Makhanda, South Africa, this study investigates households’ perceptions of water scarcity, water use, and conservation practices as a basis for designing pathways for sustainable water use practices. Results indicate that a substantial proportion of households were aware of water scarcity and attributed it to poor municipal planning rather than drought and wasteful use practices. Households reported good water use behaviour, but wasteful practices (e.g., regular flushing of toilets) were evident. Gender, age, education, and environmental awareness influenced water use practices, but the relationships were generally weak. Households participated in water conservation measures but felt the local municipal authority lagged in addressing water supply challenges. The implications of the study are discussed.


2021 ◽  
Author(s):  
Jackie Kleynhans ◽  
Stefano Tempia ◽  
Nicole Wolter ◽  
Anne von Gottberg ◽  
Jinal N. Bhiman ◽  
...  

Background SARS-CoV-2 infections may be underestimated due to limited testing access, particularly in sub-Saharan Africa. South Africa experienced two SARS-CoV-2 waves, the second associated with emergence of variant 501Y.V2. In this study, we report longitudinal SARS-CoV-2 seroprevalence in cohorts in two communities in South Africa. Methods We measured SARS-CoV-2 seroprevalence two monthly in randomly selected household cohorts in a rural and an urban community (July 2020-March 2021). We compared seroprevalence to laboratory-confirmed infections, hospitalisations and deaths reported in the districts to calculate infection-case (ICR), infection-hospitalisation (IHR) and infection-fatality ratio (IFR) in the two waves of infection. Findings Seroprevalence after the second wave ranged from 18% (95%CrI 10-26%) and 28% (95%CrI 17-41%) in children <5 years to 37% (95%CrI 28-47%) in adults aged 19-34 years and 59% (95%CrI 49-68%) in adults aged 35-59 years in the rural and urban community respectively. Individuals infected in the second wave were more likely to be from the rural site (aOR 4.7, 95%CI 2.9-7.6), and 5-12 years (aOR 2.1, 95%CI 1.1-4.2) or ≥60 years (aOR 2.8, 95%CI 1.1-7.0), compared to 35-59 years. The in-hospital IFR in the urban site was significantly increased in the second wave 0.36% (95%CI 0.28-0.57%) compared to the first wave 0.17% (95%CI 0.15-0.20%). ICR ranged from 3.69% (95%CI 2.59-6.40%) in second wave at urban community, to 5.55% (95%CI 3.40-11.23%) in first wave in rural community. Interpretation The second wave was associated with a shift in age distribution of cases from individuals aged to 35-59 to individuals at the extremes of age, higher attack rates in the rural community and a higher IFR in the urban community. Approximately 95% of SARS-CoV-2 infections in these two communities were not reported to the national surveillance system, which has implications for contact tracing and infection containment. Funding US Centers for Disease Control and Prevention


Sign in / Sign up

Export Citation Format

Share Document