scholarly journals Optimal Integration of Renewable Sources and Latent Heat Storages for Nearly Zero-Energy Buildings

Proceedings ◽  
2020 ◽  
Vol 58 (1) ◽  
pp. 35
Author(s):  
Elisa Guelpa ◽  
Giulia Mancò ◽  
Vittorio Verda

A crucial way to reach a future sustainable society concerns the path towards nearly zero-energy buildings because of large amounts of energy at stake. The present work proposes an approach for the optimal integration of small-scale technologies (renewable and traditional) to enhance the pathway of existing and inefficient buildings towards low-carbon systems in a cost–benefit effective manner. Operation optimization, as well as an innovative combined design, is investigated with the goal of selecting the capacity of the technologies to be installed depending on the expected operations. The renewable technologies are integrated with proper storage units, such as batteries and latent thermal storage, which allows for reducing the space required for the installation. Two different non-linear programming approaches are used with the aim of finding an optimal solution. The optimization allows for reducing operation costs of 22% for renewable energy sources (RES)-fed dwellings. The combined operation and design optimization lead to a reduction in installation and operating costs by 7%. In the analyzed case, the adoption of the advanced optimization approach shows that latent heat storage is more suitable to be installed than electric storage (−2.5% cost).

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5528
Author(s):  
Giulia Mancò ◽  
Elisa Guelpa ◽  
Vittorio Verda

Given the large amount of energy required in the building sector, an interesting opportunity to reach future sustainable energy systems is the path towards low energy buildings. This work proposes an approach for optimally integrating building-scale energy technologies (both traditional and renewable) to enhance the transformation of the existing buildings (often energetically inefficient) in low-carbon systems. The approach promotes a transition sustainable from both the economic and environmental perspectives. Both operation and design optimization are considered with the aim of suggesting the best set of capacity of the technologies to be installed taking into account the expected operations. The building-scale technologies are integrated with proper storage units: Li-ion batteries and thermal storage (latent heat, that requires low installation space). As a dispatchable renewable technology, a biogas small-scale combined heat and power unit is included in the system. Once the key role played by this component in meeting the loads is proved, an analysis of the impact of the cost of the primary energy carrier of this technology on the system design is carried out. Two optimization approaches have been adopted (both based on non-linear programming). Results show that operation costs can be reduced by up to 29%. The adoption of a combined approach that takes into account both operation and design optimization lead to a reduction in installation and operating costs by up to 27%. In the analyzed cases, the use of the combined optimization confirms that latent heat storage is more suitable to be installed than electric storage (about −4.5% cost).


2020 ◽  
Vol 13 (2) ◽  
pp. 184-198
Author(s):  
Piotr Gradziuk ◽  
Barbara Gradziuk

SummarySubject and purpose of work: The subject of this analysis and evaluation is the use of renewable energy sources in Poland, particularly in the Lubelskie Voivodeship, as a peripheral region. The purpose of this paper is to identify the role and evaluate the scale and effects of using renewable energy sources (RES), as well as the availability and absorption of financial resources for RES promotion.Materials and methods: The data were obtained from the Office of the Ruda-Huta Commune, the Regional Operational Programme Department of the Marshal Office of the Lubelskie Voivodeship in Lublin and the Department of European Funds of the Ministry of Energy, as well as Statistics Poland (GUS) and the literature on the subject.Results: In Poland the proportion of energy from renewable sources to the total primary energy generated increased in 2012-2018 from 11.73% to 14.46%. A new phenomenon, which has been highly significant for the development of this sector, is the use of innovative, small-scale technologies of energy generation from renewable sources, which created the foundations for the growth of a citizens’ energy sector, based on the initiative of the citizens and their communities. The use of RES contributes to reduced expenditures on the purchase of energy carriers and constitutes an effective method of implementing plans for developing a low-carbon economy and reducing low-stack emissions.Conclusions: The continuing disparities between the regions point to the need for active structural intervention to maintain economic, social and territorial cohesion, particularly in areas which are considered peripheral and have a very low GDP per capita. One of the preferred directions should be to support the use of RES.


2022 ◽  
Vol 334 ◽  
pp. 03002
Author(s):  
Maria Alessandra Ancona ◽  
Michele Bianchi ◽  
Lisa Branchini ◽  
Francesco Catena ◽  
Andrea De Pascale ◽  
...  

The integration of renewable energy sources into the electricity system can contribute to the development of a low-carbon economy. However, due to the intermittency and non-programmability of these sources, problems related to the management of local electricity grids may occur. A possible solution or limitation to these issues is given by the electrical storage. In addition, in the next future, domestic micro-grids are expected to play a fundamental role in electric power networks, driving both the academic and industrial research interests in developing highly efficient and reliable conversion and storage technologies. In this study, the behavior of a small-scale hybrid energy system for hydrogen production and storage has been predicted, by means of a developed calculation model, and the operational strategy of the system has been optimized with the aim to maximize the hydrogen production. In addition, with the aim to maximize the overall solar-to-hydrogen chain efficiency, the whole system model has been applied to different operating scenarios, to identify the optimal management strategy to control it.


2021 ◽  
Vol 238 ◽  
pp. 02001
Author(s):  
Lorenzo Bartolucci ◽  
Stefano Cordiner ◽  
Vincenzo Mulone ◽  
Stefano Pasquale

Multi Energy Systems (MES) are effective means to increase Renewable Energy Sources (RES) penetration in the energy system and therefore to move toward a decentralized low-carbon system. Several energy vectors can be integrated together to exploit synergies in a MES framework, such as electricity, heat and hydrogen. The latter is one of the most promising energy carriers to promote widespread use of MES. Predictive management and well-defined sizing methodology are mandatory to achieve maximum performance out of MES. In this study a grid-connected MES consisting of a photovoltaic (PV) plant, a Battery Energy Storage System (BESS) and a Proton Exchange Membrane Fuel Cell (PEMFC) as a programmable Combined Cooling Heat and Power (CCHP) source, is modelled. Natural gas is considered as an alternative fuel to pure hydrogen. Mixed Integer Linear Programming and Genetic Algorithm are used respectively to solve operation and sizing problems. A single-objective optimization approach, including emission factors as optimization constraints, is carried out to find the optimal configuration of the MES. Several future scenarios are studied, considering different percentages of hydrogen in the gas mixture and comparing the techno-economic performance of the system with respect to a pure hydrogen fueling scenario. Results showed that the environmental objective within the design optimization, promote the use of hydrogen, especially in scenarios with high share of green hydrogen.


Author(s):  
Lan Lan ◽  
Kristin L. Wood ◽  
Chau Yuen

Abstract Zero energy building (ZEB) is an important concept for sustainable building design. This paper introduces a holistic design approach for residential net-zero energy buildings (NZEB) by adopting the Triple Bottom Line (TBL) principles: social, environmental, and financial. The proposed approach optimizes social need by maximizing thermal comfort time of natural cooling, and visual comfort time of daylighting. The environmental need is addressed by optimizing energy efficiency, and the financial need is addressed by optimizing life cycle cost (LCC). Multi-objective optimizations are conducted in two phases: the first phase optimizes the utilization rate of natural cooling and daylighting, and the second phase optimizes energy efficiency and LCC. Sensitivity analysis is conducted to identify the most influential variables in the optimization process. The approach is applied to the design of a landed house in a tropical country, Singapore. The results provide a framework and modeled cases for parametric design and trade-off analysis toward sustainable and livable built environment.


2017 ◽  
Author(s):  
G. C. Glatzmaier ◽  
J. Rea ◽  
M. L. Olsen ◽  
C. Oshman ◽  
C. Hardin ◽  
...  

2014 ◽  
Vol 62 (3) ◽  
pp. 489-494
Author(s):  
K. Bogucka-Bykuć ◽  
W. Włosiński ◽  
S. Bykuć

Abstract This paper presents briefly the state of the art literature review with respect to research in the field of latent heat storage systems as elements of heat only, power only or combined heat and power (CHP) plants utilizing renewable energy sources (RES) for residential applications. Next, a paper introduces initial research carried out in IMP PAN in Gdańsk, Poland, aimed at development of a prototype latent heat storage unit. Identification of the suggested application for the storage unit in a given system is presented. The first stage of development of a prototype heat storage unit, namely a process of PCM pre-selection is discussed.


Author(s):  
Zuhaib Ashfaq Khan ◽  
Hafiz Husnain Raza Sherazi ◽  
Mubashir Ali ◽  
Muhammad Ali Imran ◽  
Ikram Ur Rehman ◽  
...  

The recent advancements in the field of communication have led data sharing to become an integral part of today's smart cities with the evolution of concepts such as the internet of vehicles (IoV) paradigm. As a part of IoV, Electric Vehicles (EVs) have recently gained momentum as authorities have started expanding their Low Emission Zones (LEZ) in an effort to build green cities with low carbon footprints. Energy is one of the key requirements of EVs not only to support the smooth and sustainable operation of EV itself but to also ensure connectivity between the vehicles and infrastructure with controlling devices like sensors and actuators installed within an EV. In this context, renewable energy sources (such as wind energy) dramatically play their parts in the automobile sector towards designing the energy harvesting electric vehicles (EH-EV) to pare the energy reliance on the national grid. In this article, a novel approach is presented to achieve electric generation due to vehicle mobility to support the communication primitives in electric vehicles which enables plenty of IoV use cases in the presence of surplus energy at hand. A small-scale wind turbine is designed to harness wind power for converting it into mechanical power. This power is then fed to the onboard DC generator to produce electrical energy. Furthermore, the acquired power is processed through a regulation circuitry to consequently achieve the desired power supply for the end load, i.e. the batteries installed. The suitable orientation for efficient power generation is proposed on ANSYS-based aerodynamics analysis. The voltages induced by DC generator at No-Load condition are 35V while at Full-Load 25V are generated at rated current of 6.9A, along with the generation of power at around 100W (at constant voltage) at the rated speed of 90 mph for nominal battery charging. Moreover, the acquired data can be monitored via an android application interface by using a Bluetooth module.


Sign in / Sign up

Export Citation Format

Share Document