scholarly journals Stand-Alone Battery Thermal Management for Fast Charging of Electric Two Wheelers—Integrated Busbar Cooling

2019 ◽  
Vol 10 (2) ◽  
pp. 37 ◽  
Author(s):  
Bastian Mayer ◽  
Michael Schier ◽  
Horst E. Friedrich

This paper presents a thermal interface for cylindrical cells using busbar-integrated cooling channels. This interface is available due to the use of a stand-alone refrigerant circuit for the thermal management of the battery. A stand-alone refrigerant circuit offers performance and efficiency increases compared to state-of-the-art battery thermal management systems. This can be achieved by increasing the evaporation temperature to the requirements of the Li-ion cells and the use of alternative refrigerants. The solution proposed in this paper is defined for electric two-wheelers, as the thermal management of these vehicles is currently insufficient for fast charging where high heat losses occur. Three channel patterns for the integrated busbar cooling were examined regarding their thermal performance to cool the li-ion cells of a 16p14s battery pack during fast charging. A method of coupling correlation-based heat transfer and pressure drop with thermal finite element method (FEM) simulations was developed. The symmetric channel pattern offers a good compromise between battery temperatures and homogeneity, as well as the best volumetric and gravimetric energy densities on system level. Average cell temperatures of 22 °C with a maximum temperature spread of 8 K were achieved.

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8094
Author(s):  
Bichao Lin ◽  
Jiwen Cen ◽  
Fangming Jiang

It is important for the safety and good performance of a Li-ion battery module/pack to have an efficient thermal management system. In this paper, a battery thermal management system with a two-phase refrigerant circulated by a pump was developed. A battery module consisting of 240 18650-type Li-ion batteries was fabricated based on a finned-tube heat-exchanger structure. This structural design offers the potential to reduce the weight of the battery thermal management system. The cooling performance of the battery module was experimentally studied under different charge/discharge C-rates and with different refrigerant circulation pump operation frequencies. The results demonstrated the effectiveness of the cooling system. It was found that the refrigerant-based battery thermal management system could maintain the battery module maximum temperature under 38 °C and the temperature non-uniformity within 2.5 °C for the various operation conditions considered. The experimental results with 0.5 C charging and a US06 drive cycle showed that the thermal management system could reduce the maximum temperature difference in the battery module from an initial value of 4.5 °C to 2.6 °C, and from the initial 1.3 °C to 1.1 °C, respectively. In addition, the variable pump frequency mode was found to be effective at controlling the battery module, functioning at a desirable constant temperature and at the same time minimizing the pump work consumption.


Electrochem ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 135-148
Author(s):  
Mohammad Alipour ◽  
Aliakbar Hassanpouryouzband ◽  
Riza Kizilel

This paper proposes a novel He-based cooling system for the Li-ion batteries (LIBs) used in electric vehicles (EVs) and hybrid electric vehicles (HEVs). The proposed system offers a novel alternative battery thermal management system with promising properties in terms of safety, simplicity, and efficiency. A 3D multilayer coupled electrochemical-thermal model is used to simulate the thermal behavior of the 20 Ah LiFePO4 (LFP) cells. Based on the results, He gas, compared to air, effectively diminishes the maximum temperature rise and temperature gradient on the cell surface and offers a viable option for the thermal management of Li-ion batteries. For instance, in comparison with air, He gas offers 1.18 and 2.29 °C better cooling at flow rates of 2.5 and 7.5 L/min, respectively. The cooling design is optimized in terms of the battery’s temperature uniformity and the battery’s maximum temperature. In this regard, the effects of various parameters such as inlet diameter, flow direction, and inlet flow rate are investigated. The inlet flow rate has a more evident influence on the cooling efficiency than inlet/outlet diameter and flow direction. The possibility of using helium as a cooling fluid is shown to open new doors in the subject matter of an effective battery thermal management system.


2020 ◽  
pp. 290-290
Author(s):  
Asif Afzal ◽  
Awatef Abidi ◽  
Ad Samee ◽  
Rk Razak ◽  
Manzoore Soudagar ◽  
...  

In modern electric vehicles the thermal stability problems associated with Lithium-ion (Li-ion) battery system is of major concern. Proper battery thermal management systems (BTMS) is required to ensure safety and efficient performance of battery cells. A realistic conjugate heat transfer and fluid flow analysis of Li-ion prismatic battery cell is performed. The flow of air as coolant, is laminar, flowing between the heat generating battery cells. The effect of few important working parameters like volumetric heat generation ( q), conduction-convection parameter (?cc), Reynolds number (Re), Aspect ratio (Ar), and spacing between the cells ( f) is investigated in this work. For the wide range of parameters considered, the temperature variations in battery cell and coolant is carried out. Focusing mainly on effect of Re and f, behavior of local Nusselt number (Nux), local friction coefficient (Cf, x), average Nusselt number (Nuavg), average friction coefficient (Cf, avg), maximum temperature, mean fluid temperature, heat removed from the lateral surface of cell are discussed. Nuavg increased with increase in Re but decreased with increase in f, whereas Cf, avg decreased with increase in Re and f. It is also found that their exists an upper and lower limit on Re and f above and below which the change in Cf, avg and Nuavg is negligible. Maximum temperature is significantly influenced at low Re and for all f. From the lateral surface of battery over which the coolant flows, more than 96% of heat generated in cell is removed.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6257
Author(s):  
Chunyu Zhao ◽  
Beile Zhang ◽  
Yuanming Zheng ◽  
Shunyuan Huang ◽  
Tongtong Yan ◽  
...  

The Li-ion battery is of paramount importance to electric vehicles (EVs). Propelled by the rapid growth of the EV industry, the performance of the battery is continuously improving. However, Li-ion batteries are susceptible to the working temperature and only obtain the optimal performance within an acceptable temperature range. Therefore, a battery thermal management system (BTMS) is required to ensure EVs’ safe operation. There are various basic methods for BTMS, including forced-air cooling, liquid cooling, phase change material (PCM), heat pipe (HP), thermoelectric cooling (TEC), etc. Every method has its unique application condition and characteristic. Furthermore, based on basic BTMS, more hybrid cooling methods adopting different basic methods are being designed to meet EVs’ requirements. In this work, the hybrid BTMS, as a more reliable and environmentally friendly method for the EVs, will be compared with basic BTMS to reveal its advantages and potential. By analyzing its cost, efficiency and other aspects, the evaluation criterion and design suggestions are put forward to guide the future development of BTMS.


Author(s):  
Sanjay Srinivaas ◽  
Wei Li ◽  
Akhil Garg ◽  
Xiongbin Peng ◽  
Liang Gao

Abstract Lithium-ion batteries are currently being produced and used in large quantities in the automobile sector as a clean alternative to fossil fuels. The thermal behavior of the battery pack is a very important criterion, which is not only essential for safety but also has an equally important role in the capacity and life cycle of the batteries. The liquid battery thermal management system is a very efficient type of thermal management system, and mini-channel-based liquid cooling systems are one of the most popular type of the battery thermal management system and have been researched extensively. This paper mainly intends to study the effects of tapering, the addition of grooves to the channel, the use of different nanofluids, and the flow direction of coolant on the thermal performance of the battery pack using a three-dimensional computational fluid dynamics model. The results suggest that converging channels can be used to control the temperature rise, while diverging channels can be used to control the temperature deviation. The addition of grooves and the use of nanofluids were beneficial in reducing the temperature rise. The final setups were able to reduce the maximum temperature rise by 2.267 K with a substantial pressure drop increase and by 1.513 K with an increase in pressure drop of only 19.92%.


2019 ◽  
Vol 814 ◽  
pp. 307-313
Author(s):  
Gu Yu Yu ◽  
Sum Wai Chiang ◽  
Wei Chen ◽  
Hong Da Du

A novel thermal management system (TMS) for Li-ion battery module using phase change material (PCM) and cooling water as the heat dissipation source to control battery temperature rise has been developed. Graphite sheets were applied to compensate low thermal conductivity of battery and PCM and improve temperature uniformity of the batteries. One discharge (1C rate)-charge (2C rate) circle was applied in battery modules to test the effectiveness of this TMS. A three dimensional numerical model of the battery module with the TMS was conducted. The results show that this TMS basically meets the demand about the maximum temperature difference of battery module and totally keeps the maximum temperature within the optimum operating temperature range (≤45°C).


Sign in / Sign up

Export Citation Format

Share Document