scholarly journals Research on Cooperative Braking Control Algorithm Based on Nonlinear Model Prediction

2021 ◽  
Vol 12 (4) ◽  
pp. 173
Author(s):  
Liang Chu ◽  
Cheng Chang ◽  
Di Zhao ◽  
Yanwu Xu

To address the coordinated distribution of motor braking and friction braking for the regenerative braking system, a cooperative braking algorithm based on nonlinear model predictive control (NMPC) is proposed, with braking energy recovery power, tire slip rate, and motor torque variation as the optimization objectives, and online optimization of the coordinated distribution of motor braking and friction braking. Using the offline model built in Matlab/Simulink, the cooperative braking algorithm is tested for energy efficiency and braking safety. The results show that when based on World Light Vehicle Test Cycle (WLTC), the energy recovery rate can reach 30.4%, and with a single high braking intensity, the braking safety can still be ensured.

2014 ◽  
Vol 898 ◽  
pp. 873-877 ◽  
Author(s):  
Jian Wei Cai ◽  
Liang Chu ◽  
Zi Cheng Fu ◽  
Yan Bo Wang ◽  
Wen Hui Li

Based on the traditional hydraulic unit of ESC, Jilin University developed a braking energy recovery system of uniaxial decoupled. A first-order hysteresis filtering method with filtering time factor adaptively corrected was used to calculate driver's braking demand based on pressure of the master cylinder. A series of fixed partition coefficient control strategy was developed, coordinated control of electrical regenerative braking and hydraulic braking was carried out. Vehicle test was carried out. Vehicle test results show that the brake pedal travel simulator and the braking control strategies can improve the energy recovery, and ensure that the brake pedal feel is consistent with the traditional vehicle.


2014 ◽  
Vol 701-702 ◽  
pp. 733-738
Author(s):  
Chen Lu Kong ◽  
Mao Song Wan ◽  
Ning Chen ◽  
Li Ya Lv ◽  
Bing Lin Li

This paper mainly discusses the dynamic distribution of regenerative braking system and conventional friction braking system of EV.In order to meet the requirements of vehicle braking stability and recycle the braking energy whenever possible, the paper proposes a control strategy which based on ECE regulation and I curve.Then the proposed control strategy is embedded into the simulation software ADVISOR.The result shows that the control strategy of regenerative braking the paper presented is better than ADVISOR’s own on braking energy recovery, and is especially suitable for frequent braking city conditions.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 223
Author(s):  
Qiwei Xu ◽  
Chuan Zhou ◽  
Hong Huang ◽  
Xuefeng Zhang

An antilock braking system (ABS) can ensure that the wheels are not locked during the braking process which is an important system to ensure the safety of braking. Regenerative braking is also a crucial system for hybrid vehicles and helps to improve the cruising range of the car. As such, the coordinated control of a braking system and an ABS is an important research direction. This paper researches the coordinated control of the regenerative braking system and the ABS in the hybrid vehicle based on the composite structure motor (CSM-HEV). Firstly, two new braking modes which are engine-motor coordinated braking (EMCB) and dual-motor braking (DMB) are proposed and the coordinated control model of regenerative braking and ABS is established. Then, for the purpose of optimal operating efficiency and guaranteeing the vehicle brake slip rate, a braking force distribution strategy based on predictive control algorithm is proposed. Finally, the Simulink model is established to simulate the control strategy. Results show that the slip rate can well track the target and ensure the efficient operation of the system. Compared with the normal braking mode, the braking energy recovery rate of EMCB is similar, but it can reduce the fuel loss of the engine during the braking process by 30.1%, DMB can improve the braking energy recovery efficiency by 16.78%, and the response time to track target slip is increased by 12 ms.


2014 ◽  
Vol 494-495 ◽  
pp. 214-218
Author(s):  
Jian Wei Cai ◽  
Liang Chu ◽  
Wen Ruo Wei ◽  
Yong Sheng Zhang ◽  
Wen Hui Li

Based on the analysis the theoretical of regenerative braking and energy flow of the pure electric vehicle, the main influence factors of braking energy recovery were obtained. Ignoring the energy loss and the efficiency of system components as well as the response delay of the hydraulic braking system, two different regenerative braking control strategies were established without regard to the braking force distribution restrictions of the relevant brake laws. The simulation model was built on MATLAB/Simulink platform to analysis the effect of control strategies, vehicle mass and driving cycle for pure electric vehicle braking energy recovery. It was guidance for the development of pure electric vehicle braking energy recovery control strategy.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987776 ◽  
Author(s):  
Shengqin Li ◽  
Bo Yu ◽  
Xinyuan Feng

Electric vehicles can convert the kinetic energy of the vehicle into electric energy for recycling. A reasonable braking force distribution strategy is the key to ensure braking stability and the energy recovery rate. For an electric vehicle, based on the ECE regulation curve and ideal braking force distribution (I curve), the braking force distribution strategy of the front and rear axles is designed to study the braking energy recovery control strategy. The fuzzy control method is adopted while the charging power limit of the battery is considered to correct the regenerative braking torque of the motor, the ratio of the regenerative braking force of the motor to the front axle braking force is designed according to different braking strengths, then the braking force distribution and braking energy recovery control strategies for regenerative braking and friction braking are developed. The simulation model of combined vehicle and energy recovery control strategy is established by Simulink and Cruise software. The braking energy recovery control strategy of this article is verified under different braking conditions and New European Driving Cycle conditions. The results show that the control strategy proposed in this article meets the requirements of braking stability. Under the condition of initial state of charge of 75%, the variation of state of charge of braking control strategy in this article is reduced by 8.22%, and the state of charge of braking strategy based on I curve reduces by 9.12%. The braking force distribution curves of the front and rear axle are in line with the braking characteristics, can effectively recover the braking energy, and improve the battery state of charge. Taking the using range of 95%–5% of battery state of charge as calculation target, the cruising range of vehicle with braking control strategy of this article increases to 136.64 km, which showed that the braking control strategy in this article could increase the cruising range of the electric vehicle.


2012 ◽  
Vol 157-158 ◽  
pp. 542-545 ◽  
Author(s):  
Liang Chu ◽  
Liang Yao ◽  
Zi Liang Zhao ◽  
Wen Ruo Wei ◽  
Yong Sheng Zhang

The Anti-lock Braking System (ABS) of Electric Vehicle (EV) is improved in this paper. Based on the research of system structure and motor, a new method is proposed to adjust the threshold and coordinate the motor braking force with the friction braking force. So the traditional threshold control algorithm of ABS is improved for the EV. The simulation results based on the MATLAB/Simulink model indicate that the improved ABS can keep the wheels in the stability region and decrease the motor regenerative braking force as soon as possible. The balance between brake safety and energy recovery is achieved through this method.


2012 ◽  
Vol 490-495 ◽  
pp. 195-202 ◽  
Author(s):  
Xiao Bing Ning ◽  
Yao Ting Xu ◽  
Qiu Cheng Wang ◽  
Jue Jiang Chen

In order to increase the regenerative braking energy recovery and the dynamic performance of vehicle start and acceleration in the stage of brake, the hydraulic braking energy recovery system was used with the storage battery braking energy recovery system after comparing kinds of regenerative braking recovery plan and energy storage method. The system was used to do simulation and analysis in vehicle dynamic performance and energy recovery efficiency under the PID control and ECE-15 cycle. The system simulation and analysis results show that using hydraulic regenerative braking system in pure electric vehicle can significantly improve the ability of vehicle’s start-acceleration and the increase in vehicle driving range of around 28%.


2013 ◽  
Vol 694-697 ◽  
pp. 73-76 ◽  
Author(s):  
Cong Wang ◽  
Hong Wei Liu ◽  
Liang Yao ◽  
Yan Bo Wang ◽  
Liang Chu ◽  
...  

A brake pedal stroke simulator is a key component of realizing a Regenerative Braking System. It provides a good pedal feeling to a driver, improves energy recovery and ensures braking security. This paper presents the hardware solution of the braking control system, the structure and key design parameters of a brake pedal stroke simulator. Through simulation, the energy recover rate and brake pedal feeling of drivers can be improved. The simulator can be used to realize the regenerative braking system in hybrid or electric vehicles.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yanfeng Xiong ◽  
Qiang Yu ◽  
Shengyu Yan ◽  
Xiaodong Liu

This paper proposes a novel decoupled approach of a regenerative braking system for an electric city bus, aiming at improving the utilization of the kinetic energy for rear axle during a braking process. Three contributions are added to distinguish from the previous research. Firstly, an energy-flow model of the electric bus is established to identify the characteristic parameters which affect the energy-saving efficiency of the vehicle, while the key parameters (e.g., driving cycles and the recovery rate of braking energy) are also analyzed. Secondly, a decoupled braking energy recovery scheme together with the control strategy is developed based on the characteristics of the power assistance for electric city bus which equips an air braking system, as well as the regulatory requirements of ECE R13. At last, the energy consumption of the electric city bus is analyzed by both the simulation and vehicle tests, when the superimposed and the decoupled regenerative braking system are, respectively, employed for the vehicle. The simulation and actual road test results show that compared with the superposition braking system of the basic vehicle, the decoupled braking energy recovery system after the reform can improve the braking energy recovery rate and vehicle energy-saving degree. The decoupled energy recovery system scheme and control strategy proposed in this paper can be adopted by bus factories to reduce the energy consumption of pure-electric buses.


Actuators ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
En-Ping Chen ◽  
Jiangfeng Cheng ◽  
Jia-Hung Tu ◽  
Chun-Liang Lin

A sensorless driving/braking control system for electric vehicles is explained in the present paper. In the proposed system, a field-oriented control (FOC) was used to integrate driving and braking controls in a unified module for reducing the cost of hardware and simultaneously incorporating functional flexibility. An antilock braking system can swiftly halt a vehicle during emergency braking. An electromagnetic reverse braking scheme that provided retarding torque to a running wheel was developed. The scheme could switch the state of the MOSFETs used in the system by alternating the duty cycle of pulse width modulation to adjust the braking current generated by the back electromotive force (EMF) of the motor. In addition, because the braking energy required for the electromagnetic braking scheme is related only to the back EMF, the vehicle operator can control the braking force and safely stop an electric vehicle at high speeds. The proposed integrated sensorless driving and electromagnetic braking system was verified experimentally.


Sign in / Sign up

Export Citation Format

Share Document