scholarly journals Producing a Dissimilar Joint of Copper to Austenitic Stainless Steel by Ultrasonic Welding

2021 ◽  
Vol 4 (2) ◽  
pp. 109-112
Author(s):  
Schramkó Márton ◽  
Kovács Tünde Anna

Abstract There are several possibilities for establishing a cohesion joint between dissimilar metals. In the case of thin sheets, the ultrasonic welding process is suitable. This process can establish a cohesion joint rapidly, with a low heat input between the thin sheets. The authors have tried to determine the optimal ultrasonic welding parameters for copper and austenite stainless steel joining by using an experimental method of joining. Suitable results were obtained by welding tests due dissimilarities in the chemical, physical and mechanical properties of the copper and stainless steel. A standard size sheet thickness and test sample was used for the welding by different parameters. The parameters were refined based on the theoretical and practical knowledge during the experiments. The experimental welding was made by a Branson L20 type welder machine. The joint made by the different parameters was inspected by shearing-tensile tests (maximal force level).

2018 ◽  
Vol 1 (1) ◽  
pp. 49-52
Author(s):  
Tünde Kovács ◽  
Péter Pinke

Abstract Ultrasonic welding is very useful for joining thin metal sheets [1, 2]. The effect of ultrasound on microstructure is currently not well understood because the changes produced depend very much on the welding parameters and the properties of the metal being considered. Thin sheets formed by cold rolling acquire a special grain structure. During the welding process the heat produced causes recrystallization; even where heat is not applied in the joining process the recrystallization process alters the mechanical properties within the heat affected zone (HAZ). The mechanical properties of the welded samples depend on the microstructure. In this work we analyse the ultrasonic welding effect on the joint and the HAZ [3, 4].


2019 ◽  
Vol 2 (1) ◽  
pp. 43-48
Author(s):  
Tünde Anna Kovács

Abstract Ultrasonic welding is a very useful and simple welding process. It is suitable for establishing a joint between thin sheets and dissimilar metals with short preparation and finish work time [1]. Some welding defects were detected due to less than optimal ultrasonic welding parameters. These defects were ruptures, surface colour change and unacceptable deformations. This article aims to identify these failures and their causes.


2014 ◽  
Vol 657 ◽  
pp. 306-310
Author(s):  
Lăcrămioara Apetrei ◽  
Vasile Rață ◽  
Ruxandra Rață ◽  
Elena Raluca Bulai

Research evolution timely tendencies, in the nonconventional technologies field, are: manufacture conditions optimization and complex equipments design. The increasing of ultrasonic machining use, in various technologies is due to the expanding need of a wide range materials and high quality manufacture standards in many activity fields. This paper present a experimental study made in order to analyze the welded zone material structure and welding quality. The effects of aluminium ultrasonic welding parameters such as relative energy, machining time, amplitude and working force were compared through traction tests values and microstructural analysis. Microhardness tests were, also, made in five different points, two in the base material and three in the welded zone, on each welded aluminium sample. The aluminum welding experiments were made at the National Research and Development Institute for Welding and Material Testing (ISIM) Timişoara. The ultrasonic welding temperature is lower than the aluminium melting temperature, that's so our experiments reveal that the aluminium ultrasonic welding process doesn't determine the appearance of moulding structure. In the joint we have only crystalline grains deformation, phase transformation and aluminium diffusion.


2013 ◽  
Vol 64 (1) ◽  
Author(s):  
Rashiqah Rashli ◽  
Elmi Abu Bakar ◽  
Shahrul Kamaruddin

Ultrasonic welding had been widely used in various manufacturing industries such as aviation, medical, electronic device and many more. It offers a continued safe operation, faster and also low cost as it able to join weld part less than one second and also simple to maintain the tooling devices. Though ultrasonic welding brings a lot of advantages in assembly especially in thermoplastic material of manufacturing product, it also has a dominant problem to be deal with. The problem in ultrasonic welding is poor weld quality due to improper selection of ultrasonic welding parameters especially in near field configuration. Thus, an optimal combination of parameters is crucial in order to produce good quality weld assembly for this configuration. In this paper, ultrasonic welding process, ultrasonic weld joint defects and determination of optimal parameters for thermoplastic material had been discussed thoroughly. 


Author(s):  
Gurinder Singh Brar ◽  
Manpreet Singh ◽  
Ajay Singh Jamwal

AISI 304 stainless steel is one of the grades of steel widely used in engineering applications particularly in chemical equipments, food processing, pressure vessels and paper industry. Friction crush welding (FCW) is type of friction welding, where there is a relative motion between the tool and work-piece. In FCW process, the edges of the work-piece to be joined are prepared with flanged edges and then placed against each other. A non-consumable friction disc tool will transverse with a constant feed rate along the edges of the work-piece, which leads to welding. The joint is formed by the action of crushing a certain amount of additional flanged material into the gap formed by the contacting material. The novelty of present work is that FCW removes the limitations of friction stir welding and Steel work pieces can be economically welded by FCW. Taguchi method of Design of Experiments (DOE) is used to find optimal process parameters of Friction Crush Welding (FCW). A L9 Orthogonal Array, Signal to Noise ratio (S/N) and Analysis of Variance are applied to analyze the effect of welding parameters (welding speed, RPM, tool profile) on the weld properties like bond strength. Grain refinement takes place in friction crush welding as is seen in friction stir welding. Friction crush welding process also has added advantage in reducing distortion and residual stresses.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1088
Author(s):  
Niklas Sommer ◽  
Igor Kryukov ◽  
Christian Wolf ◽  
Michael Wiegand ◽  
Martin Kahlmeyer ◽  
...  

In the present investigation, thin sheets of stabilized and unstabilized ferritic stainless steel were welded in butt joint configuration using irradiation of a 1070 nm fiber-laser. Using optical microscopy, the microstructural evolution upon alternating heat input was characterized. In addition to that, hardness and tensile tests were carried out on the specimens. Detailed focus was given to the intergranular corrosion properties, which were investigated on basis of the Strauss test with different times of exposure to the corrosive environment. Following these tests, the mechanical properties of the joints were characterized using tensile tests. A combination of the latter with an inspection by μ-CT analysis allows for the proposition of an intergranular corrosion rate with regard to the degradation of the joint strength.


2013 ◽  
Vol 758 ◽  
pp. 1-10
Author(s):  
Fabiano Rezende ◽  
Luís Felipe Guimarães de Souza ◽  
Pedro Manuel Calas Lopes Pacheco

Welding is a complex process where localized and intensive heat is imposed to a piece promoting mechanical and metallurgical changes. Phenomenological aspects of welding process involve couplings among different physical processes and its description is unusually complex. Basically, three couplings are essential: thermal, phase transformation and mechanical phenomena. Welding processes can generate residual stress due to the thermal gradient imposed to the workpiece in association to geometric restrictions. The presence of tensile residual stresses can be especially dangerous to mechanical components submitted to fatigue loadings. The present work regards on study the residual stress in welded superduplex stainless steel pipes using experimental and a numerical analysis. A parametric nonlinear elastoplastic model based on finite element method is used for the evaluation of residual stress in superduplex steel welding. The developed model takes into account the coupling between mechanical and thermal fields and the temperature dependency of the thermomechanical properties. Thermocouples are used to measure the temperature evolution during welding stages. Instrumented hole drilling technique is used for the evaluation of the residual stress after welding process. Experimental data is used to calibrate the numerical model. The methodology is applied to evaluate the behavior of two-pass girth welding (TIG for root pass and SMAW for finishing) in 4 inch diameter seamless tubes of superduplex stainless steel UNS32750. The result shows a good agreement between numerical experimental results. The proposed methodology can be used in complex geometries as a powerful tool to study and adjust welding parameters to minimize the residual stresses on welded mechanical components.


2021 ◽  
Vol 2 (12 (110)) ◽  
pp. 22-31
Author(s):  
Agus Widyianto ◽  
Ario Sunar Baskoro ◽  
Gandjar Kiswanto ◽  
Muhamad Fathin Ginanjar Ganeswara

Orbital pipe welding was often used to manufacture piping systems. In orbital pipe welding, a major challenge is the welding torch’s position during the welding process, so that additional methods are needed to overcome these challenges. This paper discusses the influence of welding sequence and welding current on distortion, mechanical properties and metallurgical observations in orbital pipe welding with SS 316L pipe square butt joints. The variation of the orbital pipe welding parameters used is welding current and welding sequence. The welding current used is 100 A, 110 A, and 120 A, while the welding sequence used is one sequence, two sequences, three sequences, and four sequences. The welding results will be analyzed from distortion measurement, mechanical properties test and metallurgical observations. Distortion measurements are made on the pipe before welding and after welding. Testing of mechanical properties includes tensile tests and microhardness tests, while metallurgical observations include macrostructure and microstructural observations. The results show that maximum axial distortion, transverse distortion, ovality, and taper occurred at a welding current of 120 A with four sequences of 445 µm, 300 µm, 195 µm, and 275 µm, respectively. The decrease in ultimate tensile strength is 51 % compared to the base metal’s ultimate tensile strength. Horizontal and vertical microhardness tests show that welding with one sequence produces the greatest microhardness value, but there is a decrease in the microhardness value using welding with two to four sequences. Orbital pipe welding results in different depths of penetration at each pipe position. The largest and smallest depth of penetration was 4.11 mm and 1.60 mm, respectively


2018 ◽  
Vol 9 (1) ◽  
pp. 31-34
Author(s):  
Gyula Bagyinszki ◽  
Enikő Bitay

Abstract The technological advantages of ultrasonic welding: (no requirement for filler metal; use of small electrical transient resistance contacts; ability to weld thin materials to thick materials) results in a helium-solid weld seam; the computer configuration of the welding parameters can easily be solved; clean and safe workflow (no sparks, flame or smoke); can be integrated into the production line. This article deals with some of the additional application features of this welding process.


To perform welding process on the material under varying conditions with different flux materials, different welding parameters and further subjecting the material to various suitable tests such as tensile test, hardness test, optical tests and study the characteristics of the material under testing. The tests conducted on the welded work piece it is proposed the suitable parameters under which welding of greater precision can be performed. it is also analyzed the working conditions under which the selected work piece material of stainless steel grade 304 would deviate from its desired characteristics. From the results of the tests it is able to determine the conditions that would reduce the characteristics of the welded work piece. Thus it can be further used for reference when the welding process is done on the same material of stainless steel of grade 304. The electrodes that were chosen for this project were selected by the criteria of widely used and chief material in the welding of various grades of stainless steel. The composition of the chemicals that constitute the electrodes were tribiologically analyzed and studied. The need for high precision welding in large scale as well as small scale industries is relatively high as the threshold for errors in such areas are greatly undesirable. The results of this study would greatly contribute to the reduction of errors and defects in the welding operation.


Sign in / Sign up

Export Citation Format

Share Document