scholarly journals Mouse intestinal microbiota reduction favors local intestinal immunity triggered by antigens displayed in Bacillus subtilis biofilm

2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Cédric M. Vogt ◽  
Monika Hilbe ◽  
Mathias Ackermann ◽  
Claudio Aguilar ◽  
Catherine Eichwald
2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Keyuan Chen ◽  
Yan Gao ◽  
Xinjian Wang ◽  
Feng Cheng ◽  
Shahbaz Ul Haq ◽  
...  

2020 ◽  
pp. 1-14 ◽  
Author(s):  
Yuanyuan Wang ◽  
Chianning Heng ◽  
Xihong Zhou ◽  
Guangtian Cao ◽  
Lei Jiang ◽  
...  

Abstract The present study investigated the effect of Bacillus subtilis DSM 29784 (Ba) and enzymes (xylanase and β-glucanases; Enz), alone or in combination (BE) as antibiotic replacements, on the growth performance, digestive enzyme activity, immune response and the intestinal barrier of broiler chickens. In total, 1200 1-d-old broilers were randomly assigned to five dietary treatments, each with six replicate pens of forty birds for 63 d as follows: (a) basal diet (control), supplemented with (b) 1 × 109 colony-forming units (cfu)/kg Ba, (c) 300 mg/kg Enz, (d) 1 × 109 cfu/kg Ba and 300 mg/kg Enz and (e) 250 mg/kg enramycin (ER). Ba, Enz and BE, similar to ER, decreased the feed conversion rate, maintained intestinal integrity with a higher villus height:crypt depth ratio and increased the numbers of goblet cells. The BE group exhibited higher expression of claudin-1 and mucin 2 than the other four groups. BE supplementation significantly increased the α-diversity and β-diversity of the intestinal microbiota and markedly enhanced lipase activity in the duodenal mucosa. Serum endotoxin was significantly decreased in the BE group. Compared with those in the control group, increased superoxide dismutase and glutathione peroxidase activities were observed in the jejunal mucosa of the Ba and BE groups, respectively. In conclusion, the results suggested that dietary treatment with Ba, Enz or BE has beneficial effects on growth performance and anti-oxidative capacity, and BE had better effects than Ba or Enz alone on digestive enzyme activity and the intestinal microbiota. Ba or Enz could be used as an alternative to antibiotics for broiler chickens.


2019 ◽  
Vol 7 (3) ◽  
pp. 71 ◽  
Author(s):  
Cristiano Bortoluzzi ◽  
Bruno Serpa Vieira ◽  
Juliano Cesar de Paula Dorigam ◽  
Anita Menconi ◽  
Adebayo Sokale ◽  
...  

The objective of this study was to evaluate the effects of the dietary supplementation of Bacillus subtilis DSM 32315 (probiotic) on the performance and intestinal microbiota of broiler chickens infected with Clostridium perfringens (CP). One-day-old broiler chickens were assigned to 3 treatments with 8 replicate pens (50 birds/pen). The treatments were: non-infected control; infected control; and infected supplemented with probiotic (1 × 106 CFU/g of feed). On day of hatch, all birds were sprayed with a coccidia vaccine based on the manufacturer recommended dosage. On d 18–20 the infected birds were inoculated with CP via feed. Necrotic enteritis (NE) lesion score was performed on d 21. Digestive tract of 2 birds/pen was collected on d 21 to analyze the ileal and cecal microbiota by 16S rRNA sequencing. Performance was evaluated on d 28 and 42. On d 21, probiotic supplementation reduced (p < 0.001) the severity of NE related lesion versus infected control birds. On d 28, feed efficiency was improved (p < 0.001) in birds supplemented with probiotic versus infected control birds. On d 42, body weight gain (BW gain) and feed conversion ratio (FCR) were improved (p < 0.001) in probiotic supplemented birds versus infected control birds. The diversity, composition and predictive function of the intestinal microbial digesta changed with the infection but the supplementation of probiotic reduced these variations. Therefore, dietary supplementation of Bacillus subtilis DSM 32315 was beneficial in attenuating the negative effects of CP challenge on the performance and intestinal microbiota of broilers chickens.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Xin Wu ◽  
Yongmin Zheng ◽  
Jie Ma ◽  
Jie Yin ◽  
Shuai Chen

Inflammatory bowel disease, a gut disease that is prevalent worldwide, is characterized by chronic intestinal inflammation, such as colitis, and disorder of the gut microbiome. Glycine (Gly) is the simplest amino acid and functions as an anti-inflammatory immune-nutrient and intestinal microbiota regulator. This study aimed at investigating the effect of Gly on colitis induced in mice by intrarectal administration of 5% acetic acid (AA). Bodyweight and survival rates were monitored, and colonic length and weight, serum amino acid concentrations, intestinal inflammation-related gene expression, and colonic microbiota abundances were analyzed. The results showed that Gly dietary supplementation had no effect on the survival rate or the ratio of colonic length to weight. However, Gly supplementation reversed the AA-induced increase in serum concentrations of amino acids such as glutamate, leucine, isoleucine, and valine. Furthermore, Gly inhibited colonic gene expression of interleukin- (IL-) 1β and promoted IL-10 expression in colitis mice. Gly supplementation also reversed the AA-induced reduction in the abundance of bacteria such as Clostridia, Ruminococcaceae, and Clostridiales. This change in the intestinal microbiota was possibly attributable to the changes in colonic IL-10 expression and serum concentrations of valine and leucine. In sum, Gly supplementation regulated the serum concentrations of amino acids, the levels of colonic immune-associated gene expression, and the intestinal microbiota in a mouse model of colitis. These findings enhance our understanding of the role of Gly in regulating metabolism, intestinal immunity, and the gut microbiota in animals afflicted with colitis.


Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1062 ◽  
Author(s):  
Esteban Sáez-González ◽  
Beatriz Mateos ◽  
Pedro López-Muñoz ◽  
Marisa Iborra ◽  
Inés Moret ◽  
...  

Inflammatory bowel disease (IBD) is a chronic and relapsing inflammatory condition of the gastrointestinal tract; it is a heterogeneous and multifactorial disorder resulting from a complex interplay between genetic variation, intestinal microbiota, the host immune system and environmental factors such as diet, drugs, breastfeeding and smoking. The interactions between dietary nutrients and intestinal immunity are complex. There is a compelling argument for environmental factors such as diet playing a role in the cause and course of IBD, given that three important factors in the pathogenesis of IBD can be modulated and controlled by diet: intestinal microbiota, the immune system and epithelial barrier function. The aim of this review is to summarize the epidemiological findings regarding diet and to focus on the effects that nutrients exert on the intestinal mucosa–microbiota–permeability interaction. The nature of these interactions in IBD is influenced by alterations in the nutritional metabolism of the gut microbiota and host cells that can influence the outcome of nutritional intervention. A better understanding of diet–host–microbiota interactions is essential for unravelling the complex molecular basis of epigenetic, genetic and environmental interactions underlying IBD pathogenesis as well as for offering new therapeutic approaches for the treatment of IBD.


Sign in / Sign up

Export Citation Format

Share Document