Numerical study of the impact of reverberation room design and test parameters on sound absorption measurements

2021 ◽  
Vol 263 (4) ◽  
pp. 2372-2383
Author(s):  
Paul Didier ◽  
Cédric Van hoorickx ◽  
Edwin Reynders

The measurement of sound absorption in reverberation rooms following the ISO 354:2003 standard relies on Sabine's equation to derive absorption coefficients from reverberation times. This equation assumes perfect diffusivity, i.e. the sound field is composed of many statistically independent plane waves with uniformly distributed spatial phases, themselves uncorrelated to the corresponding amplitudes. In this work, both existing and fictitious reverberation rooms are numerically modelled using the finite element method. Finite porous absorbers are introduced in the rooms as equivalent fluid models. Standardized sound absorption measurement are simulated in the rooms through the determination of reverberation times. The respective effects of the sample size, sample placement, source positioning, and presence of finite panel diffusers are investigated. The resulting absorption coefficients are then confronted to the theoretical values in a perfectly diffuse sound field, that interacts with a baffled, finite-sized absorber, as obtained with a hybrid deterministic-statistical energy analysis model. The process notably underlines the strong, yet often disregarded, beneficial effect of panel diffusers at low frequencies in highly regularly-shaped rooms. Another conclusion of this work is that reverberation room design represents a crucial factor that can influence sound absorption measurements at low frequencies.

2021 ◽  
Vol 263 (4) ◽  
pp. 2360-2371
Author(s):  
Paul Didier ◽  
Cédric Van hoorickx ◽  
Edwin Reynders

The ISO 354:2003 standard relating to sound absorption measurements is currently under revision to improve the reproducibility of the procedure it describes. Round robin tests conducted across various reverberation rooms indeed revealed significant disparities between sound absorption measurements of the same sample. One of the reasons is that, at low frequencies, the sound field in a single laboratory cannot be considered fully diffuse. However, the average sound field across different laboratories may be considered diffuse if the interaction between the finite sample and the diffuse field is duly accounted for and the direct field close to the absorber is disregarded. In this work, a method is developed for optimizing reverberation room design such that measured absorption values are as close as possible to ensemble average diffuse values. The reverberation room is modelled using the finite element method and standardized measurements of an absorptive sample are simulated. The distance between resulting absorption coefficients and diffuse target values is minimized in an optimization procedure having the geometrical characteristics of the model as input parameters. The results are anticipated to participate to the revised ISO 354 as guidelines for the construction of new reverberation rooms or the improvement of existing ones.


Acoustics ◽  
2019 ◽  
Vol 1 (3) ◽  
pp. 644-660 ◽  
Author(s):  
Jose Cucharero ◽  
Tuomas Hänninen ◽  
Tapio Lokki

The reverberation of a room is often controlled by installing sound absorption panels to the ceiling and on the walls. The reduced reverberation is particularly important in classrooms to maximize the speech intelligibility and in open-plan offices to make spaces more pleasant. In this study, the impact of the placement of the absorption material in a room was measured in a reverberation room and in a mockup classroom. The results show that absorption material is less efficient if it is mounted to the corners or on the edges between the walls and ceiling, if the sound field is more or less diffuse. If the room modes dominate the sound field, the most efficient location for the sound-absorbing material was found at one of the surfaces causing the modes. The results help acoustical consultants to place the absorption material in optimal locations and, generally, minimize the amount of material and save costs.


2014 ◽  
Vol 22 (02) ◽  
pp. 1450001
Author(s):  
Jianli Liu ◽  
Xinjin Liu ◽  
Wei Bao ◽  
Shuangshan Wang ◽  
Longmin Chen ◽  
...  

Nonwovens are ideal materials for use as noise control elements because of their unique physical structure and special acoustic behaviors, especially when their structures are complicatedly designed. In this paper, we first deduce a sound absorption model for dual-layered porous nonwovens by extending the Zwikker and Kosten theory. Then a theoretical analysis and a numerical simulation of the impact of thickness and porosity of outer and inner layers on the sound absorption coefficient are followed by an experiment designed to compare the calculated sound absorption coefficients and the measured ones. Experiment results indicate that the measured and the calculated sound absorption coefficients are very similar in trend with change of thickness, porosity and sound frequency, apart from the obvious difference at low frequency. Finally, the main reasons for the differences between the theoretic data and the experimental ones are also explored.


2019 ◽  
Vol 11 (7) ◽  
pp. 2185 ◽  
Author(s):  
Sakagami ◽  
Okuzono ◽  
Somatomo ◽  
Funahashi ◽  
Toyoda

In this communication, the sound absorption characteristics of rectangular-shaped plane space sound absorbers without any backing structure using permeable membranes (PMs) are measured by reverberation room method. First, three types of PMs, in this study woven fabrics, are selected with different flow resistances and surface densities. They are prepared in the plane rectangular-shaped space absorbers of two different sizes. The measured results are discussed through comparison with the existing theoretical and measured results for absorbers of the other shapes or configurations. The present results and discussion demonstrate that the reverberation absorption coefficients of the proposed absorbers are low at low frequencies and converge to a moderately high value at high frequencies. Especially, ones with higher flow resistance than the air impedance converge to a value greater than 0.5, which is a theoretically estimated maximum absorption coefficient of infinite single-leaf PM. This is inferred to be attributed mainly to area effect. From these results the proposed absorbers can be used effectively despite of their very simple structure. Also it is found that the proposed absorber can offer higher sound absorption than permeable membrane absorbers of other shapes or configuration. Regarding the effect of the size, the absorbers of smaller size offer higher absorption coefficients regardless of material properties of the PMs used in the experiments.


2014 ◽  
Vol 663 ◽  
pp. 464-468 ◽  
Author(s):  
Elammaran Jayamani ◽  
Sinin Hamdan ◽  
Soon Kok Heng ◽  
Md. Rezaur Rahman

In this research, the sound absorption coefficients of polymer matrix reinforced lignocellulosic fiber composites were investigated. The sound absorbing characteristic of composites was investigated in the impedance tube, according to transfer function method. A two microphone setup was fabricated according to American society for testing materials ASTM E1050-10 and it is used to measure sound absorption coefficients of composites. In this investigation, the influences of two kinds of polymer matrix (Polypropylene and Urea-formaldehyde) and two kinds of natural fibers (rice straw and kenaf) were studied for sound absorption coefficients. Four samples of novel sound absorbers were made with different matrix and fibers composition, Sample 1 and 2 was made of rice straw reinforced with polypropylene and Urea-formaldehyde and Sample 3 and 4 was made with kenaf fiber reinforced with polypropylene and Urea-formaldehyde matrix. Sound absorption coefficients were measured at frequencies from 300 Hz to 2000 Hz. The results showed when the frequencies increased, sound absorption increased until it reached a frequency of 2000 Hz but at 1200 Hz sound absorption decreased for all the samples this is due to specific character of natural fibers. From the result, the kind of natural fiber did not have significant influences on sound absorption coefficients. As results it was found that the matrix influence more in sound absorption properties in low frequencies; and due to that fact the above composites are low sound absorbing materials; but still they are better than other construction materials available in sound absorbing properties.


2018 ◽  
Vol 18 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Hua Qui ◽  
Yang Enhui

Abstract A novel wool absorption board was prepared by using a traditional non-woven technique with coarse wools as the main raw material mixed with heat binding fibers. By using the transfer-function method and standing wave tube method, the sound absorption properties of wool boards in a frequency range of 250-6300 Hz were studied by changing the thickness, density, and cavity depth. Results indicated that wool boards exhibited excellent sound absorption properties, which at high frequencies were better than that at low frequencies. With increasing thickness, the sound absorption coefficients of wool boards increased at low frequencies and fluctuated at high frequencies. However, the sound absorption coefficients changed insignificantly and then improved at high frequencies with increasing density. With increasing cavity depth, the sound absorption coefficients of wool boards increased significantly at low frequencies and decreased slightly at high frequencies.


2020 ◽  
pp. 152808372094424
Author(s):  
Seyed Ehsan Samaei ◽  
Hasan Asilian Mahabadi ◽  
Seyyed Mohammad Mousavi ◽  
Ali Khavanin ◽  
Mohammad Faridan ◽  
...  

Among fibers with lignocellulosic origin, Kenaf fiber, because of its advantages and as a sustainable alternative to synthetic fibers has received increasing attention for manufacturing hybrid composites with reasonable acoustical and physical properties. The present study deals with the impact of chemical treatment of Kenaf fibers on the overall properties of hybrid composites fabricated from these fibers. Also, the results from predictive analytical model of sound absorption for these composites were employed for comparison with the experimental findings. Kenaf fibers were treated at room temperature with 6% concentration of sodium hydroxide (NaOH) and 4 h immersion time. Having manufactured the composites with the treated and untreated fibers, the normal sound absorption coefficients and tensile strength properties of these sample composites were determined according to ISO 10534-2 and ASTM C1557 − 14, respectively. The SEM analysis of the treated and untreated fibers revealed that in terms of fiber diameter and morphology the former was thinner and had better surface appearance. The experimental measurement of acoustic absorption coefficients of the composites made of treated fibers demonstrated superior sound absorption properties and tensile strength. The revised empirical models proposed by Delany & Bazley and Garai & Pompoli along with Nelder-Mead simplex method were employed and well predicted the sound absorption coefficients of the sample composites. There was also a fair consistency between the experimental and predicted results.


2021 ◽  
Vol 263 (1) ◽  
pp. 5578-5583
Author(s):  
Noriko Okamoto ◽  
Toru Otsru ◽  
Reiji Tomiku ◽  
Masahiro Masuda ◽  
Arisa Tabaru

To predict and control the indoor sound field, it is important to comprehend sound absorption characteristics of building materials. In the previous studies, the authors have proposed an in-situ sound absorption measurement method of materials using ensemble averaging technique, namely EA method. The method yields a simple and efficient in-situ measurement of surface normal impedance of materials at random-incidence. In this paper, the authors calculate the statistical absorption coefficient using the surface normal impedance of material by the EA method to obtain random incidence absorption coefficient. At first, the procedure of calculating the statistical absorption coefficient from the normal impedance by EA method is described. Next, the sound absorption characteristics for five kinds of materials are measured by the EA method and the reverberation room method. Finally, the statistical absorption coefficients are calculated from results obtained by the EA method and are compared with absorption coefficients by the reverberation room method.


1998 ◽  
Vol 4 (1) ◽  
pp. 86-90
Author(s):  
Vytautas Stauskis

The influence of the slits between the walls and the floor of the model upon the objective acoustical indicators was examined in a scaled model of a hall. The Small Hall of the Lithuanian National Philharmonic Society was selected for the investigations. The hall is of rectangular form, 13.6 m in length, 10.7 m in width and 7 m in height. The hall model was scaled 1:25. The floor and the ceiling of the model were made of cloth-based laminate, while the walls of plywood 8 mm thick, with three layers of varnish. Thus, all materials employed in the model were similar to those of the real hall by their sound-absorption properties. There were 1 to 3 mm slits between the floor and the walls of the model. Their overall length was about 10–12 m (converted to real values). A spark sound source was used for the radiation of signals within the required spectrum. The sound source was put through a hole in the floor in order to improve the directivity diagram of the radiation. The positions of both the source and the ¼ microphone coincided in all cases. The frequencies examined fell in the range between 1250 Hz and 50000 Hz. The frequency of quantization of the signal was 166.6 kHz and the quantization time was 6 mcs. All frequencies were converted into real ones in the diagrams. A 2000 Hz upper limit was established to ensure that the Nyquist frequency exceeds 3. The experiments showed that the slits in the model influenced the muffling of the sound energy starting from 200 ms. With the slits present, the muffling occurs faster and the greatest difference of 2–3 dB is observed in the interval of 1000—2500 ms. Given small slit dimensions and overall slit length, the change of 2-3 dB is quite significant. The muffling of the sound field of the model is not exponent in character. The muffling varies on differently in different time intervals. Then the reverberation times of a non-filtered signal must be different when the muffling is approximated every 10 dB. The investigation showed that, with the slits present, the reverberation time values were reduced by 0.4–0.8 s throughout the interval when the muffling was approximated every 10 dB, starting from 0 to—30 dB and from—5 to—35 dB. This means that the slits absorb the sound energy on all intervals of the muffling of the sound field. The largest sound absorption is reached when the muffling of the sound field is approximated every 10 dB from 0 to—30 dB and amounts to as much as 3-6 m2. The influence of the slits is weaker when the muffling is approximated on other intervals. The slits also produce effect upon subjective acoustical indicators of a non-filtered signal, which vary between 1 to 2 dB. This shows that the intensity of reflections is changed in various time intervals by the slits. The influence exerted by the slits over the early reverberation time manifests itself both at the low and high frequencies. The greatest difference of about 0.8 s is observed at 100 Hz and 160 Hz. Within the frequency range from 500 Hz to 1000 Hz, the difference is not so marked and amounts to about 0.5 s. Within the range from 200 Hz to 400 Hz, the early reverberation time is only slightly influenced by the slits. The effect produced by the slits on the standard reverberation time, as compared with the early reverberation time, is not significant up to 160 Hz, while in the frequency range of 200—2,000 Hz the standard reverberation time is cut by about 0.4–0.6 s. The smallest sound absorption brought about by the slits is observed at low frequencies (around 1 m2). In the frequency range of 200—500 Hz, the sound absorption amounts to 3–4 m2, and at the frequencies exceeding 630 Hz to 2–7 m2. At low frequencies, the music sound clarity index is increased by the slits by about 0.5 dB. From 200 Hz and on, the clarity index is increased by 2 to 4 dB. These results show that the slits in the model alter the intensity of the early sound reflections. Beginning with 250 Hz, the sound absorption amounts to 3.2–9.0 m2. Such absorption is already significant, therefore the slit factor must be taken into consideration while conducting investigations in the hall model.


2021 ◽  
pp. 174425912098418
Author(s):  
Toivo Säwén ◽  
Martina Stockhaus ◽  
Carl-Eric Hagentoft ◽  
Nora Schjøth Bunkholt ◽  
Paula Wahlgren

Timber roof constructions are commonly ventilated through an air cavity beneath the roof sheathing in order to remove heat and moisture from the construction. The driving forces for this ventilation are wind pressure and thermal buoyancy. The wind driven ventilation has been studied extensively, while models for predicting buoyant flow are less developed. In the present study, a novel analytical model is presented to predict the air flow caused by thermal buoyancy in a ventilated roof construction. The model provides means to calculate the cavity Rayleigh number for the roof construction, which is then correlated with the air flow rate. The model predictions are compared to the results of an experimental and a numerical study examining the effect of different cavity designs and inclinations on the air flow rate in a ventilated roof subjected to varying heat loads. Over 80 different test set-ups, the analytical model was found to replicate both experimental and numerical results within an acceptable margin. The effect of an increased total roof height, air cavity height and solar heat load for a given construction is an increased air flow rate through the air cavity. On average, the analytical model predicts a 3% higher air flow rate than found in the numerical study, and a 20% lower air flow rate than found in the experimental study, for comparable test set-ups. The model provided can be used to predict the air flow rate in cavities of varying design, and to quantify the impact of suggested roof design changes. The result can be used as a basis for estimating the moisture safety of a roof construction.


Sign in / Sign up

Export Citation Format

Share Document