scholarly journals Optimasi OPTIMASI BIAYA TRANSPORTASI PADA UKM DI KOTA BATAM

2021 ◽  
Vol 9 (1) ◽  
pp. 1-19
Author(s):  
Welly Sugianto ◽  
Elva Susanti

This research was conducted at UKM Jovelyn in Batam city. Jovelyn's UKM produces various kinds of cakes and is marketed in markets in Batam City. The UKM opened 4 branches and marketed its products to 7 markets in the city of Batam. Product distribution is still random and not properly regulated. This resulted in a very large transportation cost, up to 1/3 of the total production cost. This shows that product transportation is still not carried out effectively and efficiently. The transportation problem is converted into a mathematical form so that the problem can be solved by the transportation method. The transportation method aims to minimize the objective function which is a function of transportation costs. The transportation method is basically the same as the linear program where at each iteration a selection is made to enter the basic variabel and leave the basic variabel. There are several iteration methods, namely the northwest corner method, minimum cost method, genetic algorithm, Vogel's approximation method, minimum row method, Russell's approximation method and column minimum method. Previous research has shown that the Vogel's approximation method, and Russell's approximation method are more efficient and accurate. This study uses both methods and a sensitivity analysis is performed to optimize the calculation results. The sensitivity analysis aims to determine the extent to which the objective function constants and the constraint function constants can change Keywords: Transportation, Sensitivity, SME  

2017 ◽  
Author(s):  
Tri Tri Hernawati

AbstractThe research is aimed at analyzing the implementation of distribution transportation method and finding out the saving of distribution transportation cost by using Vogel’s Approximation Method and Modified Distribution Method (MODI). The research used Vogel’s Approximation Method as the initial solution and Modified Distribution Method as the final solution to save distribution transportation cost. Implementation of combination, Vogel’s Approximation Method and Modified Distribution Method is a system will be develop to find the results of calculation of the initial cost of distribution, a minimum cost distribution, and allocation of items to be distributed from the origin place to the destination place. Entry data by user is origin place (many place and name of place), destination place (many place and name of place), amount of supply from the each origin, amount of demand from the each destination, and distribution cost from the each origin to the each destination. The result of the research shows minimalizing total distribution cost about 10,7%


2018 ◽  
Author(s):  
Tri Tri Hernawati

The research is aimed at analyzing the implementation of distribution transportation method and finding out the saving of distribution transportation cost by using Vogel’s Approximation Method and Modified Distribution Method (MODI). The research used Vogel’s Approximation Method as the initial solution and Modified Distribution Method as the final solution to save distribution transportation cost. Implementation of combination, Vogel’s Approximation Method and Modified Distribution Method is a system will be develop to find the results of calculation of the initial cost of distribution, a minimum cost distribution, and allocation of items to be distributed from the origin place to the destination place. Entry data by user is origin place (many place and name of place), destination place (many place and name of place), amount of supply from the each origin, amount of demand from the each destination, and distribution cost from the each origin to the each destination. The result of the research shows minimalizing total distribution cost about 10,7%The research is aimed at analyzing the implementation of distribution transportation method and finding out the saving of distribution transportation cost by using Vogel’s Approximation Method and Modified Distribution Method (MODI). The research used Vogel’s Approximation Method as the initial solution and Modified Distribution Method as the final solution to save distribution transportation cost. Implementation of combination, Vogel’s Approximation Method and Modified Distribution Method is a system will be develop to find the results of calculation of the initial cost of distribution, a minimum cost distribution, and allocation of items to be distributed from the origin place to the destination place. Entry data by user is origin place (many place and name of place), destination place (many place and name of place), amount of supply from the each origin, amount of demand from the each destination, and distribution cost from the each origin to the each destination. The result of the research shows minimalizing total distribution cost about 10,7%


Author(s):  
Ade Momon ◽  
Damara Widi Ardiatma

The goal of the distribution system is to deliver the product promptly, quickly and generate the minimum cost. Therefore, the development of distribution system is very important because it can support the growth and development of the company. This study aims to get the route of delivery of the most appropriate and optimal products and get transportation cost savings. PT. IPM is a company engaged in the production of automotive. The problems faced by PT. IPM is the absence of good product distribution planning and scheduling distribution process is considered not maximal. This is due to the number of routes are too many, the distance is too far delivery, the limited means of conveyance and utilization of transport space less than the maximum and the high cost of transportation. To solve the problem of PT. IPM then needed the best method, that is Saving Matrix method which is used to determine product distribution route to the customer based on the capacity of conveyance used and Nearest Neighbors method for route ordering. From the result of mathematical calculation with Saving Matrix method and algorithm with Nearest Neighbors method obtained 49 best routes for PT. IPM. The distance to be taken is as far as 6,010 kilometers with transportation cost of Rp. 46,630,527. The resulting distance saving is 22% (1,690.9 km), while the transportation cost savings that occur is 38% or Rp. 28,494,021.


Author(s):  
Ehab M. Fattouh ◽  
Neveen Y. Saad

Abstract Designing a curved corner trapezoidal channel section with a minimal cost, which is the study's objective function, encompasses minimizing the channel lining and excavation costs. The discharge, as the prime constraint, and the permissible velocities, as subsidiary constraints, were considered to solve the problem. Mathematical optimization was used to obtain the optimum canal dimensions. The results were represented in chart form to facilitate easy design of the optimal channel dimensions with minimum cost. To demonstrate the practicability of the proposed method, a design example has been included. A comparison between the parameters and the cost of the proposed section with the conventional trapezoidal section revealed that the proposed section is more economic, and more suitable from a maintenance point of view. At last, sensitivity analysis was derived to show the effect of changing the canal dimensions on the cost.


Author(s):  
She-min Zhang ◽  
Nobuyoshi Morita ◽  
Takao Torii

Abstract This paper proposes a new method to reduce the forced vibration response of frame of linkage. It is that the root-mean-square (RMS) value of binary maximum (Bmax) of forced vibration response at a series of angular velocities is taken as the objective function, and the counterweight mass parameters of links and the stiffness factors are used as design variables. Then, it is found out that the responses are related not only to the Bmax value of shaking forces, but also to the shape of curve of shaking forces. The calculation results are compared with those of two other methods used in the reduction of forced vibration response by optimized balance of linkages, and it is shown that the new method can significantly reduce the responses of frame of linkage.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
SHROUQ GAMAL ◽  
Mohamed K. El-Nemr ◽  
Ahmed M. El-Kassas

Purpose The purpose of this study is to understand the functional power of frequency from-to chart (FFTC) as an independent solution-key for generation optimal (exact) facilities sequences with an equal distance of straight-line flow patterns. The paper will propose a bi-objective function model based on the Torque Method then will turn it into a computer-based technique with a permutative manner using the full enumeration method. This model aims to figure out if there is a difference between the moment minimization and backtracking treatment. Furthermore, the proposed technique will measure the performance of related works from literature to numerically highlight their limitations. Design/methodology/approach The literature of related works provided two-principles assumed mastering material flow sequences. The researchers gathered and analyzed the three methods – used FFTC as an independent technique – mentioned in the literature then measured their performance with the proposed technique. The proposed technique is based on the computation of torque value using an enhancement of bi-objective function model then application a permutative approach with full enumeration methodology. The bi-objective function model used once to mimic the grand moment value of FFTC and again to study the reflection of minimizing the congestion of backtracking movements on the minimization of total transportation cost. Findings Based on the analysis of literature and comparative results of its three case studies using the proposed technique, it is found that: there are optimum facilities sequences with rich opportunities of exact pathway selection. Reduction methodology is an inefficient way to generate exact results. There is a gap between combining the minimization of the grand moment and the treatment of the backtracking problem. Research limitations/implications This study is one of the first contributions that discusses the assumption of integration between optimization moment value and its relation to treatment backtracking problem. Also, the illness of reduction methodology to reach optimal solutions. The further direction of this research will highlight the conjecture of searching the exact results for small size problems, analyzing the given data and its logical dimensions, developing logical rules for solving and verifying large size problems based on the exact results (The conjecture of P = NP). Originality/value This paper provides a detailed numerical analysis of the most common problems generally faced facility layout problems through understanding the lack of integration between moment minimization and backtracking minimization. Also, the inefficiency of reliance on reduction methodology either in scores of frequencies between facilities with weak relation or the number of permutations. Based on those findings, further study will search the logical philosophy exactly optimizing FFTC manually or without having to deal with a permutative approach for large size problems – which considered non-deterministic polynomial-time problem.


JOURNAL ASRO ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 83
Author(s):  
Akhmat Nuryadin ◽  
Abdul Rahman ◽  
Cahyanto Cahyanto

The process of designing a propeller as a ship propulsor is an important step to produce a propeller that has the ability to achieve the desired target speed of the ship. Propeller optimization is an effort to produce a propeller design with optimal capabilities. This propeller design uses a B-series propeller where this propeller is commonly used as ship propulsor. Optimization steps to find the optimal propeller, namely: determining the objective function, determining the decision variable, and determining the constraint variable. The objective function of this optimization is to determine the Advanced-optimal (J-opt) coefficient value for the propeller. The J-opt coefficient must have a value greater than the J-Design coefficient (J-d) value and the smallest possible value (minimization function). For decision variables include picth diameter ratio (P / D) and Blade area ratio (Ae / Ao) and number of leaves (Z). While the constraint variables are: the pitch diameter ratio value of the B-series propeller (0.5≤P/D≤1.4), the blade area ratio B-series (0.3≤Ae/Ao≤1, 05) as well as the number of blade (2≤Z≤7). From the calculation results of the optimization of the B-series propeller design for the KCR 60, the optimum value is different for each blade. the propeller with the number of blade 2 (Z = 2) obtained the optimum propeller with the value of J-opt =0.77098733, Ae/Ao=0.3, P/D=1.13162337, KT = 0.165632781, 10KQ=0, 27546033 and efficiency=0.73198988. Popeller with number of blades 3 (Z=3) obtained optimum propeller with J-opt value=0.77755594, Ae/Ao=0.3, P/D=1.06370107, KT=0.168069763, 10KQ=0.28984068 and efficiency=0.70590799. Propeller with number of blades 4 (Z=4) obtained optimum propeller with J-opt value=0.78478688, Ae/Ao=0.45954773, P/D=1.03798312, Kt=0.172147709, 10Kq= 0.3091063 and efficiency=0.67797119. Propeller with blades number 5(Z=5) obtained optimum propeller with J-opt value=0.78575616, Ae/Ao=0.65607164, P/D=1.02716571, KT=0.174099168, 10KQ=0.31376705 and efficiency=0.67547177. Propeller with blades number 6 (z=6) obtained optimum propeller with J-opt value=0.78867357, Ae/Ao=0.71124343, P/D=1.0185055, KT=0.176525247, 10KQ=0.32215257 and efficiency =0.66705719. Propeller with number of blades 7 (Z=7) obtained optimum propeller with J-opt value=0.7949898, Ae/Ao=0.69772623, P/D=1.01780081, KT=0.181054792, KQ=0.34011349 , and efficiency =0.64804328.Keywords : KCR, Optimization,Wageningen B-series.


2021 ◽  
Vol 13 (20) ◽  
pp. 11373
Author(s):  
Shouxu Song ◽  
Yongting Tian ◽  
Dan Zhou

In recent years, mobile payments have gradually replaced cash payments, resulting in a gradual decline in the number of automatic teller machines (ATMs) demanded by banks. Through investigation and analysis, we determine four means to deal with decommissioned ATMs, and construct thereafter an ATM reverse logistics (RL_ATMs) network model, which includes suppliers, producers, warehouses, operators, maintenance centers, collection and inspection centers, disposal centers, remanufacturing centers, and recycling centers. This model is further expressed as a mixed integer linear programming (MILP) model. Given that an ATM recycling network has planned and batched characteristics, a percentage diversion method is proposed to transform a real multi-cycle problem to a single-cycle problem. The RL_ATMs network constructed in this study presents the two forms of ATMs, functional modules and the entire machine. We used the actual situations of the related companies and enterprises in Anhui Province and its surrounding areas, as well as major banks’ ATMs, as bases in using the LINGO software to solve the proposed MILP model with the objective function of minimizing costs and environmental emissions, and obtain the relevant companies’ launch operations. Lastly, we analyzed the relationship between coefficients in the percentage diversion method and calculation results, cost, and carbon emissions. Accordingly, we find that the number of remanufacturing and maintenance centers has no evident impact on the objective function, transportation costs account for a large proportion of the total cost, and emissions tax is small.


2010 ◽  
Vol 163-167 ◽  
pp. 2365-2368 ◽  
Author(s):  
Shu Ling Qiao ◽  
Zhi Jun Han

In this paper, determinate beam and indeterminate beam with multiple span are optimized by using genetic algorithm, the mathematic model of optimize beam is built and the processing method of constraint conditions is given. The examples show that the algorithm could be used for optimizing determinate structure, and also optimizing indeterminate structure. Compared to the linear approximation method, genetic algorithm has advantages of being simple, easy, fast convergence and has no use for changing the objective function and constraint conditions to linearity or other processing. Its results agree with linear approximation method’s. It is the other method that can be adopt in engineering field.


Author(s):  
Payam Hanafizadeh ◽  
Abolfazl Ghaemi ◽  
Madjid Tavana

In this paper, the authors study the sensitivity analysis for a class of linear programming (LP) problems with a functional relation among the objective function parameters or those of the right-hand side (RHS). The classical methods and standard sensitivity analysis software packages fail to function when a functional relation among the LP parameters prevail. In order to overcome this deficiency, the authors derive a series of sensitivity analysis formulae and devise corresponding algorithms for different groups of homogenous LP parameters. The validity of the derived formulae and devised algorithms is corroborated by open literature examples having linear as well as nonlinear functional relations between their vector b or vector c components.


Sign in / Sign up

Export Citation Format

Share Document