Integrated global change impact studies in the Arctic: the role of the stakeholders

1999 ◽  
Vol 18 (2) ◽  
pp. 389-396 ◽  
Author(s):  
Manfred A. Lange ◽  
Stewart J. Cohen ◽  
Peter Kuhry
1999 ◽  
Vol 18 (2) ◽  
pp. 389-396 ◽  
Author(s):  
Manfred A. Lange ◽  
Stewart J. Cohen ◽  
Peter Kuhry

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brice K. Grunert ◽  
Maria Tzortziou ◽  
Patrick Neale ◽  
Alana Menendez ◽  
Peter Hernes

AbstractThe Arctic is experiencing rapid warming, resulting in fundamental shifts in hydrologic connectivity and carbon cycling. Dissolved organic matter (DOM) is a significant component of the Arctic and global carbon cycle, and significant perturbations to DOM cycling are expected with Arctic warming. The impact of photochemical and microbial degradation, and their interactive effects, on DOM composition and remineralization have been documented in Arctic soils and rivers. However, the role of microbes, sunlight and their interactions on Arctic DOM alteration and remineralization in the coastal ocean has not been considered, particularly during the spring freshet when DOM loads are high, photoexposure can be quite limited and residence time within river networks is low. Here, we collected DOM samples along a salinity gradient in the Yukon River delta, plume and coastal ocean during peak river discharge immediately after spring freshet and explored the role of UV exposure, microbial transformations and interactive effects on DOM quantity and composition. Our results show: (1) photochemical alteration of DOM significantly shifts processing pathways of terrestrial DOM, including increasing relative humification of DOM by microbes by > 10%; (2) microbes produce humic-like material that is not optically distinguishable from terrestrial humics; and (3) size-fractionation of the microbial community indicates a size-dependent role for DOM remineralization and humification of DOM observed through modeled PARAFAC components of fluorescent DOM, either through direct or community effects. Field observations indicate apparent conservative mixing along the salinity gradient; however, changing photochemical and microbial alteration of DOM with increasing salinity indicate changing DOM composition likely due to microbial activity. Finally, our findings show potential for rapid transformation of DOM in the coastal ocean from photochemical and microbial alteration, with microbes responsible for the majority of dissolved organic matter remineralization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jennifer A. MacKinnon ◽  
Harper L. Simmons ◽  
John Hargrove ◽  
Jim Thomson ◽  
Thomas Peacock ◽  
...  

AbstractUnprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.


2021 ◽  
pp. 186810262110186
Author(s):  
Patrik Andersson

Research confirms that China is becoming more engaged in the Arctic. However, international relations scholarship often extrapolates from relatively few instances of activity to wide-ranging claims about Chinese priorities. Fortunately, Chinese political discourse is organised by labels that allow us to study how the Arctic is classified and ranked along China’s other foreign policy priorities. This article analyses two such classifications – “important maritime interest” and “strategic new frontier,” exploring how they have come about, what they mean, and how they add political priority to the Arctic. It argues that hierarchies are constructed in two ways: by adding gradients and by including/excluding categories of priority. It views categories as performative: they not only convey information about character and relative importance of interests but are also used for achieving different objectives. By focusing on foreign policy classifications, the article contributes to a more nuanced and precise understanding of China’s Arctic interests.


Author(s):  
Е.С. Хаценко ◽  
Л.С. Лычкина

Представленная статья посвящена теоретико-правовым аспектам формирования экономической политики Российской Арктики, создание и регулирование Арктического экономического кластера. The presented article is devoted to the theoretical and legal aspects of the formation of the economic policy of the Russian Arctic, the creation and regulation of the Arctic economic cluster.


2014 ◽  
Vol 18 (8) ◽  
pp. 3301-3317 ◽  
Author(s):  
M. Honti ◽  
A. Scheidegger ◽  
C. Stamm

Abstract. Climate change impact assessments have become more and more popular in hydrology since the middle 1980s with a recent boost after the publication of the IPCC AR4 report. From hundreds of impact studies a quasi-standard methodology has emerged, to a large extent shaped by the growing public demand for predicting how water resources management or flood protection should change in the coming decades. The "standard" workflow relies on a model cascade from global circulation model (GCM) predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is present at each level and propagates through the model cascade. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. Our hypothesis was that the relative importance of climatic and hydrologic uncertainty is (among other factors) heavily influenced by the uncertainty assessment method. To test this we carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment with two different likelihood functions. One was a time series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was an approximate likelihood function for the flow quantiles. The results showed that the expected climatic impact on flow quantiles was small compared to prediction uncertainty. The choice of uncertainty assessment method actually determined what sources of uncertainty could be identified at all. This demonstrated that one could arrive at rather different conclusions about the causes behind predictive uncertainty for the same hydrological model and calibration data when considering different objective functions for calibration.


2018 ◽  
Vol 374 (1763) ◽  
pp. 20170405 ◽  
Author(s):  
Heather M. Kharouba ◽  
Jayme M. M. Lewthwaite ◽  
Rob Guralnick ◽  
Jeremy T. Kerr ◽  
Mark Vellend

Over the past two decades, natural history collections (NHCs) have played an increasingly prominent role in global change research, but they have still greater potential, especially for the most diverse group of animals on Earth: insects. Here, we review the role of NHCs in advancing our understanding of the ecological and evolutionary responses of insects to recent global changes. Insect NHCs have helped document changes in insects' geographical distributions, phenology, phenotypic and genotypic traits over time periods up to a century. Recent work demonstrates the enormous potential of NHCs data for examining insect responses at multiple temporal, spatial and phylogenetic scales. Moving forward, insect NHCs offer unique opportunities to examine the morphological, chemical and genomic information in each specimen, thus advancing our understanding of the processes underlying species’ ecological and evolutionary responses to rapid, widespread global changes. This article is part of the theme issue ‘Biological collections for understanding biodiversity in the anthropocene’.


1991 ◽  
Vol 15 ◽  
pp. 17-25 ◽  
Author(s):  
Chi F. Ip ◽  
William D. Hibler ◽  
Gregory M. Flato

A generalized numerical model which allows for a variety of non-linear rheologies is developed for the seasonal simulation of sea-ice circulation and thickness. The model is used to investigate the effects (such as the role of shear stress and the existence of a flow rule) of different rheologies on the ice-drift pattern and build-up in the Arctic Basin. Differences in local drift seem to be closely related to the amount of allowable shear stress. Similarities are found between the elliptical and square cases and between the Mohr-Coulomb and cavitating fluid cases. Comparisons between observed and simulated buoy drift are made for several buoy tracks in the Arctic Basin. Correlation coefficients to the observed buoy drift range from 0.83 for the cavitating fluid to 0.86 for the square rheology. The average ratio of buoy-drift distance to average model-drift distance for several buoys is 1.15 (square), 1.18 (elliptical), 1.30 (Mohr-Coulomb) and 1.40 (cavitating fluid).


2012 ◽  
Vol 47 (2) ◽  
pp. 923-931 ◽  
Author(s):  
James M. Armitage ◽  
Sung-Deuk Choi ◽  
Torsten Meyer ◽  
Trevor N. Brown ◽  
Frank Wania

Sign in / Sign up

Export Citation Format

Share Document