scholarly journals Hemosiderin, a possible biomarker for sudep?

2021 ◽  
Vol 29 ◽  
Author(s):  
Andressa Sampaio Pereira ◽  
Patrícia de Morais Ferreira Brandão ◽  
Jerónimo A Auzmend ◽  
Alberto Lazarowski

Epilepsy is one of the neurological diseases of complex etiology that affects around 50 million people worldwide and is characterized by abnormal electrical activity and recurrent seizures. Uncontrolled generalized repetitive tonic-clonic seizures (GTCS) are the main causes of unexpected sudden death in epilepsy (SUDEP). Hypoxic stress induced by seizure results in neurocardiogenic dysfunctions, including iron overload and cardiomyopathy (IOC) which is related to severe lipid peroxidation caused by the production of reactive oxygen species (ROS). ROS induces recurrent seizure activity, favoring the overexpression of P glycoprotein (P-gp) in the heart. P-gp plays a depolarizing role in cardiomyocyte membranes and potassium (Kir) channels control cellular excitability regarding the repolarization of the cardiac action potential. All these events result in a possible appearance of severe bradycardia and fatal arrhythmia. Several studies have sought evidence for different possible biomarkers for potential prediction of the risk of SUDEP avoiding its fatal outcome.

2001 ◽  
Vol 28 (8) ◽  
pp. 929-933 ◽  
Author(s):  
Shung-Shung Sun ◽  
Yu-Chien Shiau ◽  
Cheng-Chieh Lin ◽  
Albert Kao ◽  
Cheng-Chun Lee

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Babar Ali ◽  
Qazi Mohammad Sajid Jamal ◽  
Showkat R. Mir ◽  
Saiba Shams ◽  
Mohammad Amjad Kamal

AbstractSince 3000 B.C., evergreen plant Thea sinensis (Theaceae) is used both as a social and medicinal beverage. Leaves of T. sinensis contain amino acids, vitamins, caffeine, polysaccharides and polyphenols. Most of the natural medicinal actions of tea are due to the availability and abundance of polyphenols mainly catechins. It has also been stated that some catechins were absorbed more rapidly than other compounds after the oral administration of tea and could increase the bio-enhancing activities of anticancer drugs by inhibiting P-glycoprotein (P-gp). The results of the molecular docking showed that polyphenols bind easily to the active P-gp site. All compounds exhibited fluctuating binding affinity ranged from −11.67 to −8.36 kcal/mol. Observed binding energy required for theaflavin to bind to P-gp was lowest (−11.67 kcal/mol). The obtained data that supports all the selected polyphenols inhibited P-gp and therefore may enhance the bioavailability of drugs. This study may play a vital role in finding hotspots in P-gp and eventually may be proved useful in designing compounds with high affinity and specificity to the protein.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 171
Author(s):  
Marika Ruponen ◽  
Konsta Kettunen ◽  
Monica Santiago Pires ◽  
Riikka Laitinen

In this study, the amino acid arginine (ARG) and P-glycoprotein (P-gp) inhibitors verapamil hydrochloride (VER), piperine (PIP) and quercetin (QRT) were used as co-formers for co-amorphous mixtures of a Biopharmaceutics classification system (BCS) class IV drug, furosemide (FUR). FUR mixtures with VER, PIP and QRT were prepared by solvent evaporation, and mixtures with ARG were prepared by spray drying in 1:1 and 1:2 molar ratios. The solid-state properties of the mixtures were characterized with X-ray powder diffraction (XRPD), Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) in stability studies under different storage conditions. Simultaneous dissolution/permeation studies were conducted in side-by-side diffusion cells with a PAMPA (parallel artificial membrane permeability assay) membrane as a permeation barrier. It was observed with XRPD that ARG, VER and PIP formed co-amorphous mixtures with FUR at both molar ratios. DSC and FTIR revealed single glass transition values for the mixtures (except for FUR:VER 1:2), with the formation of intermolecular interactions between the components, especially salt formation between FUR and ARG. The co-amorphous mixtures were found to be stable for at least two months under an elevated temperature/humidity, except FUR:ARG 1:2, which was sensitive to humidity. The dissolution/permeation studies showed that only the co-amorphous FUR:ARG mixtures were able to enhance both the dissolution and permeation of FUR. Thus, it is concluded that formulating co-amorphous salts with ARG may be a promising option for poorly soluble/permeable FUR.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yali Liu ◽  
Ling Zhang ◽  
Shaofeng Wei ◽  
Jinyang Cai ◽  
Zhenzhong Zang ◽  
...  

Five pulchinenosides (pulchinenoside B3, pulchinenoside BD, pulchinenoside B7, pulchinenoside B10, and pulchinenoside B11) isolated from Pulsatilla chinensis (Bge) Regel saponins extract exhibited strong antitumor activities but poor gastrointestinal absorption properties. The enteric induction of P-glycoprotein (P-gp) is understood to restrict the oral bioavailability of some pharmaceutical compounds and lead to adverse drug reactions. Therefore, the present investigation was intended to delineate the impacts of pulchinenosides on cellular P-gp function and expression using Sf9 membrane vesicles and LS180 cells as a surrogate of human intestinal epithelial cells. Preliminary cytotoxic studies showed that 10 μM was an acceptable concentration for cytotoxicity and antiproliferation studies for all pulchinenosides using the alamarBlue assay. The cell cycle of LS180 cells detected by flow cytometry was not significantly influenced after 48 hours of coincubation with 10 μM of pulchinenosides. In the presence of pulchinenosides, the ATP-dependent transport of N-methyl-quinidine mediated by P-glycoprotein was stimulated significantly. The upregulation of P-glycoprotein and mRNA levels was found by Western blot and real-time PCR analysis in LS180 cells. Parallel changes indicate that all pulchinenosides are exposed to pulchinenosides-mediated transcriptional regulation. In conclusion, pulchinenosides could induce P-glycoprotein expression and directly increase its functional activity.


2008 ◽  
Vol 24 (3) ◽  
pp. 290-300 ◽  
Author(s):  
Srinivasan Senthilkumari ◽  
Thirumurthy Velpandian ◽  
Nihar R. Biswas ◽  
Narayanan Sonali ◽  
Supriyo Ghose

2009 ◽  
Vol 29 (6) ◽  
pp. 1079-1083 ◽  
Author(s):  
Leon M Tai ◽  
A Jane Loughlin ◽  
David K Male ◽  
Ignacio A Romero

The clearance of amyloid beta (Aβ) from the brain represents a novel therapeutic target for Alzheimer's disease. Conflicting data exist regarding the contribution of adenosine triphosphatebinding cassette transporters to the clearance of Aβ through the blood-brain barrier. Therefore, we investigated whether Aβ could be a substrate for P-glycoprotein (P-gp) and/or for breast cancer resistance protein (BCRP) using a human brain endothelial cell line, hCMEC/D3. Inhibition of P-gp and BCRP increased apical-to-basolateral, but not basolateral-to-apical, permeability of hCMEC/D3 cells to 125l Aβ 1–40. Our in vitro data suggest that P-gp and BCRP might act to prevent the blood-borne Aβ 1–40 from entering the brain.


2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Lixia Ji ◽  
Lixia Cheng ◽  
Zhihong Yang

Objective.Lens osmotic expansion, provoked by overactivated aldose reductase (AR), is the most essential event of sugar cataract. Chloride channel 3 (Clcn3) is a volume-sensitive channel, mainly participating in the regulation of cell fundamental volume, and P-glycoprotein (P-gp) acts as its modulator. We aim to study whether P-gp and Clcn3 are involved in lens osmotic expansion of galactosemic cataract.Methods and Results.In vitro, lens epithelial cells (LECs) were primarily cultured in gradient galactose medium (10–60 mM), more and more vacuoles appeared in LEC cytoplasm, and mRNA and protein levels of AR, P-gp, and Clcn3 were synchronously upregulated along with the increase of galactose concentration. In vivo, we focused on the early stage of rat galactosemic cataract, amount of vacuoles arose from equatorial area and scattered to the whole anterior capsule of lenses from the 3rd day to the 9th day, and mRNA and protein levels of P-gp and Clcn3 reached the peak around the 9th or 12th day.Conclusion. Galactosemia caused the osmotic stress in lenses; it also markedly leads to the upregulations of AR, P-gp, and Clcn3 in LECs, together resulting in obvious osmotic expansion in vitro and in vivo.


2019 ◽  
Vol 442 ◽  
pp. 91-103 ◽  
Author(s):  
Albert A. De Vera ◽  
Pranav Gupta ◽  
Zining Lei ◽  
Dan Liao ◽  
Silpa Narayanan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document