Workplace atmospheres. Measurement of the dustiness of bulk materials. Requirements and reference test methods

2006 ◽  

1991 ◽  
Vol 239 ◽  
Author(s):  
Martha K. Small ◽  
Joost J. Vlassak ◽  
William D. Nix

ABSTRACTSince its first application to thin films in the 1950's, the bulge test has had a prominent place in the field of thin film mechanical properties. The major appeal of the technique is that it is analogous to the familiar uniaxial tension test, which is commonly applied to bulk materials. At the same time, it avoids the sample tearing and alignment problems associated with micro-tensile tests. Unfortunately, bulge test results have been sometimes controversial and difficult to reproduce. In this paper we address possible causes for mese inconsistencies and describe a method by which the bulge test technique can be made to produce accurate and reliable results.



Author(s):  
Robert M. Fisher

By 1940, a half dozen or so commercial or home-built transmission electron microscopes were in use for studies of the ultrastructure of matter. These operated at 30-60 kV and most pioneering microscopists were preoccupied with their search for electron transparent substrates to support dispersions of particulates or bacteria for TEM examination and did not contemplate studies of bulk materials. Metallurgist H. Mahl and other physical scientists, accustomed to examining etched, deformed or machined specimens by reflected light in the optical microscope, were also highly motivated to capitalize on the superior resolution of the electron microscope. Mahl originated several methods of preparing thin oxide or lacquer impressions of surfaces that were transparent in his 50 kV TEM. The utility of replication was recognized immediately and many variations on the theme, including two-step negative-positive replicas, soon appeared. Intense development of replica techniques slowed after 1955 but important advances still occur. The availability of 100 kV instruments, advent of thin film methods for metals and ceramics and microtoming of thin sections for biological specimens largely eliminated any need to resort to replicas.



Author(s):  
Daniel UGARTE

Small particles exhibit chemical and physical behaviors substantially different from bulk materials. This is due to the fact that boundary conditions can induce specific constraints on the observed properties. As an example, energy loss experiments carried out in an analytical electron microscope, constitute a powerful technique to investigate the excitation of collective surface modes (plasmons), which are modified in a limited size medium. In this work a STEM VG HB501 has been used to study the low energy loss spectrum (1-40 eV) of silicon spherical particles [1], and the spatial localization of the different modes has been analyzed through digitally acquired energy filtered images. This material and its oxides have been extensively studied and are very well characterized, because of their applications in microelectronics. These particles are thus ideal objects to test the validity of theories developed up to now.Typical EELS spectra in the low loss region are shown in fig. 2 and energy filtered images for the main spectral features in fig. 3.



Author(s):  
YIQUN MA

For a long time, the development of dynamical theory for HEER has been stagnated for several reasons. Although the Bloch wave method is powerful for the understanding of physical insights of electron diffraction, particularly electron transmission diffraction, it is not readily available for the simulation of various surface imperfection in electron reflection diffraction since it is basically a method for bulk materials and perfect surface. When the multislice method due to Cowley & Moodie is used for electron reflection, the “edge effects” stand firmly in the way of reaching a stationary solution for HEER. The multislice method due to Maksym & Beeby is valid only for an 2-D periodic surface.Now, a method for solving stationary solution of HEER for an arbitrary surface is available, which is called the Edge Patching method in Multislice-Only mode (the EPMO method). The analytical basis for this method can be attributed to two important characters of HEER: 1) 2-D dependence of the wave fields and 2) the Picard iteractionlike character of multislice calculation due to Cowley and Moodie in the Bragg case.



2001 ◽  
Vol 120 (5) ◽  
pp. A586-A587
Author(s):  
L BEST ◽  
S JO ◽  
V VANZANTEN ◽  
D HALDANE ◽  
V LOO ◽  
...  




1990 ◽  
Vol 64 (03) ◽  
pp. 478-484 ◽  
Author(s):  
Thomas Exner ◽  
Douglas A Triplett ◽  
David A Taberner ◽  
Margaret A Howard ◽  
E Nigel Harris

SummarySix lyophilized plasma samples were sent to 20 “expert” laboratories for assessment of lupus anticoagulant (LA). Four samples contained pooled LA of graded potency mixed with aged normal plasma. One contained LA plus cephalin phospholipid and one contained a nonspecific venom anticoagulant. Sixteen methods were used overall with some participants using up to 8 methods. Results were scored in regard to the known potencies of LA in the samples and other known induced defects.Activated partial thromboplastin time (APTT) tests used by most participants for preliminary screening were relatively sensitive, but non-specific. Platelet or phospholipid neutralization procedures (PNP) appeared to be sensitive and specific but showed a non-linear response to increased LA content. Kaolin clotting time (KCT) tests showed the most sensitive response to increased LA content but the weaker LA were not scored as abnormal by most laboratories as the samples may have contained platelet fragments. Other commonly used tests such as the tissue thromboplastin inhibition (TTI) test and the dilute Russell’s viper venom test (DRVVT) were carried out somewhat inconsistently. The variability in performance of tests in different laboratories indicates that standardization of methodology is urgently required.Generally it seemed that most clotting tests were “bypassed” by the addition of phospholipid to a known LA-positive sample in apparently direct proportion to their sensitivity. Sample preparation, especially prevention of contamination with activated platelets is a vital preliminary part in the assay of LA.



WRPMD'99 ◽  
1999 ◽  
Author(s):  
Brian C. Roberts ◽  
J. P. Ault
Keyword(s):  


TAPPI Journal ◽  
2011 ◽  
Vol 10 (7) ◽  
pp. 29-34
Author(s):  
TEEMU PUHAKKA ◽  
ISKO KAJANTO ◽  
NINA PYKÄLÄINEN

Cracking at the fold is a quality defect sometimes observed in coated paper and board. Although tensile and compressive stresses occur during folding, test methods to measure the compressive strength of a coating have not been available. Our objective was to develop a method to measure the compressive strength of a coating layer and to investigate how different mineral coatings behave under compression. We used the short-span compressive strength test (SCT) to measure the in-plane compressive strength of a free coating layer. Unsupported free coating films were prepared for the measurements. Results indicate that the SCT method was suitable for measuring the in-plane compressive strength of a coating layer. Coating color formulations containing different kaolin and calcium carbonate minerals were used to study the effect of pigment particles’ shape on the compressive and tensile strengths of coatings. Latices having two different glass transition temperatures were used. Results showed that pigment particle shape influenced the strength of a coating layer. Platy clay gave better strength than spherical or needle-shaped carbonate pigments. Compressive and tensile strength decreased as a function of the amount of calcium carbonate in the coating color, particularly with precipitated calcium carbonate. We also assessed the influence of styrene-butadiene binder on the compressive strength of the coating layer, which increased with the binder level. The compressive strength of the coating layer was about three times the tensile strength.



Sign in / Sign up

Export Citation Format

Share Document