Einfluss einer intensiven Intervall­belastung auf die Beanspruchung der kortikalen Gehirnaktivität

2015 ◽  
Vol 63 (1) ◽  

Due to methodological and technical challenges brain cortical activity has rarely been investigated during endurance exercise. In this respect, it is not surprising that effects of an acute bout of interval training on central nervous activity have not been examined yet. Therefore, the aim of the present investigation was to characterize acute adaptations of brain cortical activity and established parameters to a high intensity endurance session. In a laboratory study sixteen endurance-trained cyclists completed an exercise bout including 3 interval series on a high-performance bicycle ergometer. Changes in cortical activity were recorded with quantitative electroencephalography (EEG) and analyzed in five specific frequency ranges (theta, alpha-1, alpha-2, beta-1, beta-2). Additionally, heart rate, blood lactate concentration and received perception of effort (RPE) were measured. During warm-up brain cortical activity increased above resting levels. Compared to warm-up and active recovery, EEG spectral power in Alpha-2- and Beta-2-band was higher in each interval series. Similarly, heart rate, blood lactate concentration and RPE increased from active recovery to the following interval loads. Whereas those parameters also increased from the first to the last series of intervals, a significant reduction of spectral EEG power was recorded in the theta-, alpha-2-, beta-1- and beta-2-band. The results provide evidence on specific regulations of brain cortical activity during interval training. Gained insights on the dose-response relationship can be transferred into the training practice to optimize load control.

2019 ◽  
Vol 15 (3) ◽  
pp. 187-197 ◽  
Author(s):  
K. Kirsch ◽  
M. Düe ◽  
H. Holzhausen ◽  
C. Sandersen

Objective performance monitoring in eventing horses is rare as the implementation of standardised exercise tests is commonly perceived to interfere with the daily training routine. The validity of performance parameters derived from GPS data, heart rate (HR) and post exercise blood lactate concentration (LAC) measured during usual training sessions should therefore be evaluated. Velocity (V), HR and post exercise LAC recorded during 172 interval training sessions in 30 horses were retrospectively analysed. Linear regression of HR, averaged over retrospectively defined speed ranges, was used to calculate the V at HRs of 150 (V150) and 200 (V200) beats/min. A single exponential regression model, fitted to LAC in relation to HR values from the whole group of horses, was used to predict LAC for each horse’s individual HR value and to calculate the difference between measured and predicted LAC (LACdiff). Recovery HRs were derived from bi-exponential regression of HR decrease after exercise. Results were compared between different stages of training in the same horses and between horses categorised as superior (SP) and average performer (AP) according to their competition performance. V150 and V200 significantly increased with progressing training. SP had higher V150 and V200 values, lower LACdiff values and lower HRs after 1 min of recovery (HRR60s) than AP. Competition performance was positively correlated to V150 and V200 but negatively correlated to LACdiff and HRR60s. Regular monitoring of HR and LAC in response to interval training provided valuable indicators of performance. The results of this study may contribute to an increased applicability of routine performance monitoring in eventing horses.


2021 ◽  
Vol 6 (2) ◽  
pp. 44
Author(s):  
Stefano Benítez-Flores ◽  
Carlos A. Magallanes ◽  
Cristine Lima Alberton ◽  
Todd A. Astorino

The aim of this study was to compare the acute responses to three time-matched exercise regimens. Ten trained adults (age, maximum oxygen consumption (VO2max), and body mass index (BMI) = 25.9 ± 5.6 yr, 50.9 ± 5.4 mL·kg−1·min−1, and 22.1 ± 1.8 kg·m−2) completed sprint interval training (SIT) requiring 14 × 5 s efforts with 35 s of recovery, high-intensity interval training (HIIT) consisting of 18 × 15 s efforts at ~90% of peak heart rate (HRpeak) with 15 s of recovery, and vigorous continuous training (CT) consisting of 8.75 min at ~85 %HRpeak, in randomized order. Heart rate, blood lactate concentration, rating of perceived exertion, affective valence, and enjoyment were monitored. Moreover, indices of neuromuscular function, autonomic balance, diet, mental stress, incidental physical activity (PA), and sleep were measured 24 h after each session to analyze the magnitude of recovery. Both HIIT and CT exhibited a greater %HRpeak and time ≥ 90 %HRpeak than SIT (p < 0.05). Blood lactate and rating of perceived exertion were higher in response to SIT and HIIT vs. CT (p < 0.05); however, there were no differences in enjoyment (p > 0.05). No differences were exhibited in any variable assessed along 24 h post-exercise between conditions (p > 0.05). These data suggest that HIIT and CT accumulate the longest duration at near maximal intensities, which is considered a key factor to enhance VO2max.


2014 ◽  
Vol 9 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Øyvind Sandbakk ◽  
Matt Spencer ◽  
Gertjan Ettema ◽  
Silvana Bucher Sandbakk ◽  
Knut Skovereng ◽  
...  

Purpose:To investigate performance and the associated physiological and biomechanical responses during upper-body repeated-sprint work.Methods:Twelve male ice sledge hockey players from the Norwegian national team performed eight 30-m sprints with start every 30 s and an active recovery between sprints. Time was captured every 10 m by photocells, cycle length and rate were determined by video analyses, and heart rate and blood lactate concentration were measured by conventional methods.Results:The percentage sprint decrement was 7% over the 8 trials, with significant reductions in performance from the previous trial already on the second trial (all P < .05). Furthermore, cycle rate was reduced by 9% over the 8 trials (P < .05). Similar changes in performance and kinematic patterns were evident for all 10-m phases of the sprints. Heart rate gradually increased to 94% of maximal (178 ± 10 beats/min) over the 8 trials, and the mean reduction in heart rate was 7 ± 2 beats/min during the 22–24 s of active recovery for all trials (all P < .05). The blood lactate concentration increased to the athletes’ maximal levels over the 8 sprints (P < .05).Conclusions:This is the first study to investigate performance, physiological, and biomechanical aspects of self-propelled upperbody repeated-sprint work. The observed sprint decrement over the 8 trials was associated with reductions in cycle rates and high physiological demands. However, no kinematic and physiological characteristics were significantly correlated to repeated-sprint ability or the sprint decrement.


Author(s):  
Fernando G. Beltrami ◽  
Elena Roos ◽  
Marco von Ow ◽  
Christina M. Spengler

Purpose: To compare the cardiorespiratory responses of a traditional session of high-intensity interval training session with that of a session of similar duration and average load, but with decreasing workload within each bout in cyclists and runners. Methods: A total of 15 cyclists (maximal oxygen uptake [] 62 [6] mL·kg−1·min−1) and 15 runners ( 58 [4] mL·kg−1·min−1) performed both sessions at the maximal common tolerable load on different days. The sessions consisted of four 4-minute intervals interspersed with 3 minutes of active recovery. Power output was held constant for each bout within the traditional day, whereas power started 40 W (2 km·h−1) higher and finished 40 W (2 km·h−1) lower than average within each bout of the decremental session. Results: Average oxygen uptake during the high-intensity intervals was higher in the decremental session in cycling (89 [4]% vs 86 [5]% of , P = .002) but not in running (91 [4]% vs 90 [4]% of , P = .38), as was the time spent >90% of and the time spent >90% of peak heart rate. Average heart rate (P < .001), pulmonary ventilation (P < .001), and blood lactate concentration (P < .001) were higher during the decremental sessions in both cycling and running. Conclusions: Higher levels of physiological perturbations were achieved during decremental sessions in both cycling and running. These differences were, however, more prominent in cycling, thus making cycling a more attractive modality for testing the effects of a training intervention.


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0200690 ◽  
Author(s):  
Diego Warr-di Piero ◽  
Teresa Valverde-Esteve ◽  
Juan Carlos Redondo-Castán ◽  
Carlos Pablos-Abella ◽  
José Vicente Sánchez-Alarcos Díaz-Pintado

Sports ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Jeffrey Rothschild ◽  
George H. Crocker

The purpose of this study was to examine the effects of a 2-km swim on markers of subsequent cycling performance in well-trained, age-group triathletes. Fifteen participants (10 males, five females, 38.3 ± 8.4 years) performed two progressive cycling tests between two and ten days apart, one of which was immediately following a 2-km swim (33.7 ± 4.1 min). Cycling power at 4-mM blood lactate concentration decreased after swimming by an average of 3.8% (p = 0.03, 95% CI −7.7, 0.2%), while heart rate during submaximal cycling (220 W for males, 150 W for females) increased by an average of 4.0% (p = 0.02, 95% CI 1.7, 9.7%), compared to cycling without prior swimming. Maximal oxygen consumption decreased by an average of 4.0% (p = 0.01, 95% CI −6.5, −1.4%), and peak power decreased by an average of 4.5% (p < 0.01, 95% CI −7.3, −2.3%) after swimming, compared to cycling without prior swimming. Results from this study suggest that markers of submaximal and maximal cycling are impaired following a 2-km swim.


2018 ◽  
Vol 97 (10) ◽  
pp. 1274-1280 ◽  
Author(s):  
Ke Lu ◽  
Malin Holzmann ◽  
Fahrad Abtahi ◽  
Kaj Lindecrantz ◽  
Pelle G Lindqvist ◽  
...  

2011 ◽  
Vol 6 (1) ◽  
pp. 106-117 ◽  
Author(s):  
Jason D. Vescovi ◽  
Olesya Falenchuk ◽  
Greg D. Wells

Purpose:Blood lactate concentration, [BLa], after swimming events might be influenced by demographic features and characteristics of the swim race, whereas active recovery enhances blood lactate removal. Our aims were to (1) examine how sex, age, race distance, and swim stroke influenced [BLa] after competitive swimming events and (2) develop a practical model based on recovery swim distance to optimize blood lactate removal.Methods:We retrospectively analyzed postrace [BLa] from 100 swimmers who competed in the finals at the Canadian Swim Championships. [BLa] was also assessed repeatedly during the active recovery. Generalized estimating equations were used to evaluate the relationship between postrace [BLa] with independent variables.Results:Postrace [BLa] was highest following 100–200 m events and lowest after 50 and 1500 m races. A sex effect for postrace [BLa] was observed only for freestyle events. There was a negligible effect of age on postrace [BLa]. A model was developed to estimate an expected change in [BLa] during active recovery (male = 0; female = 1): [BLa] change after active recovery = –3.374 + (1.162 × sex) + (0.789 × postrace [BLa]) + (0.003 × active recovery distance).Conclusions:These findings indicate that swimmers competing at an elite standard display similar postrace [BLa] and that there is little effect of age on postrace [BLa] in competitive swimmers aged 14 to 29 y.


Sign in / Sign up

Export Citation Format

Share Document