Vibrational analysis of chlorine dioxide in the ground state, electrically excited state and ionic state

1983 ◽  
Vol 69 (1) ◽  
pp. 304-309
Author(s):  
B. Mohansrinivasan ◽  
R Ramasamy
1972 ◽  
Vol 50 (12) ◽  
pp. 1402-1408 ◽  
Author(s):  
S. M. Japar

The 2800 Å band system of p-dibromobenzene has been photographed under high resolution and an extended vibrational analysis has been carried out. The analysis is not inconsistent with the assignment of the system to a 1B2u ← 1Ag transition, by analogy with other p-dihalogenated benzenes. The observed spectrum can be explained in terms of a number of strong type-B vibronic bands and a considerably smaller number of type-A vibronic bands. The extensive sequence structure is adequately accounted for, and can be related to observations on other halogenated benzene molecules. Thirteen ground state and nine excited state fundamental vibrational frequencies have been assigned.


1987 ◽  
Vol 7 (2-4) ◽  
pp. 197-212 ◽  
Author(s):  
Katsuhiko Okuyama ◽  
Naohiko Mikami ◽  
Mitsuo Ito

The fluorescence excitation and dispersed fluorescence spectra of jet-cooled o- and m-toluidine were observed. Vibrational analysis of the spectra provided us with the potentials for the internal rotation of the CH3 group in both ground and excited states. In o-toluidine, a large potential barrier to the internal rotation in the ground state is practically removed in the excited state. On the other hand, a nearly free internal rotation of the CH3 group in the ground state of m-toluidine gains a large barrier by the electronic excitation. The great change in the barrier height upon the electronic excitation is more remarkable than that found for fluorotoluene. A close relationship between the barrier height and the π electron density at the ring carbon atom was found, indicating the hyperconjugation as the origin of the barrier height in the absence of steric hindrance.


Author(s):  
Oleg N. Ulenikov ◽  
Elena S. Bekhtereva ◽  
Olga V. Gromova ◽  
Martin Quack ◽  
Kirill B. Berezkin ◽  
...  

We report the spectrum of the ν1 fundamental of ClO2 centered in the infrared atmospheric window at 945.592 cm−1 measured with essentially Doppler limited resolution at an instrumental line width of 0.001 cm−1 using the Zürich prototype ZP2001 FTIR spectrometer.


Rotational analysis of band contours of the 0-0 band at 3280 Å and a 1-0 band at 3230 Å of the asymmetric top 2, 1, 3-benzothiadiazole have been carried out. The method used is that of computer simulation of the observed contour with the band type, i. e. rotational selection rules, and excited state rotational constants A ´, B ´, and C ´ as input data. It is shown that the 0-0 band is type B and therefore that the electronic assignment is 1 B 2 - 1 A 1 . The 1-0 band at 3230 Å is shown to be a type A band from which it follows that the vibration active in this band must be of symmetry species b 2 . The excited state rotational constants for the 1 B 2 electronic state are: A ´ = 0·1309±0·0003 cm -1 , B ´ = 0·0405±0·0001 cm -1 , C ´ = 0·0309±0·0001 cm -1 . The quoted uncertainties are those of the changes of the rotational constants and do not include those of the ground state. The excited state was assumed to be planar and the results support this assumption. One feature of the rotational constants is a slight decrease of I A . This, together with information from a vibrational analysis of the system, is consistent with an increase of the C 5 C 4 C 9 angle in the excited state. The origin of the 0-0 band is at 30410·5±0·2 cm -1 .


Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


1996 ◽  
Vol 6 (9) ◽  
pp. 1167-1180 ◽  
Author(s):  
A. Gicquel ◽  
M. Chenevier ◽  
Y. Breton ◽  
M. Petiau ◽  
J. P. Booth ◽  
...  

2020 ◽  
Author(s):  
Tomislav Rovis ◽  
Benjamin D. Ravetz ◽  
Nicholas E. S. Tay ◽  
Candice Joe ◽  
Melda Sezen-Edmonds ◽  
...  

We describe a new family of catalysts that undergo direct ground state singlet to excited state triplet excitation with IR light, leading to photoredox catalysis without the energy waste associated with intersystem crossing. The finding allows a mole scale reaction in batch using infrared irradiation.


2019 ◽  
Author(s):  
Matthew M. Brister ◽  
Carlos Crespo-Hernández

<p></p><p> Damage to RNA from ultraviolet radiation induce chemical modifications to the nucleobases. Unraveling the excited states involved in these reactions is essential, but investigations aimed at understanding the electronic-energy relaxation pathways of the RNA nucleotide uridine 5’-monophosphate (UMP) have not received enough attention. In this Letter, the excited-state dynamics of UMP is investigated in aqueous solution. Excitation at 267 nm results in a trifurcation event that leads to the simultaneous population of the vibrationally-excited ground state, a longlived <sup>1</sup>n<sub>O</sub>π* state, and a receiver triplet state within 200 fs. The receiver state internally convert to the long-lived <sup>3</sup>ππ* state in an ultrafast time scale. The results elucidate the electronic relaxation pathways and clarify earlier transient absorption experiments performed for uracil derivatives in solution. This mechanistic information is important because long-lived nπ* and ππ* excited states of both singlet and triplet multiplicities are thought to lead to the formation of harmful photoproducts.</p><p></p>


2019 ◽  
Vol 21 (7) ◽  
pp. 3606-3614 ◽  
Author(s):  
Maria Gabriella Chiariello ◽  
Umberto Raucci ◽  
Federico Coppola ◽  
Nadia Rega

We adopted excited state ab initio dynamics and a new time resolved vibrational analysis to unveil coupling between modes promoting photorelaxation.


2021 ◽  
Vol 23 (14) ◽  
pp. 8525-8540
Author(s):  
Mudong Feng ◽  
Michael K. Gilson

Ground-state and excited-state molecular dynamics simulations shed light on the rotation mechanism of small, light-driven molecular motors and predict motor performance. How fast can they rotate; how much torque and power can they generate?


Sign in / Sign up

Export Citation Format

Share Document