Formulation of gel containing clotrimazole-loaded nanoparticles

2019 ◽  
pp. 23-28
Author(s):  
Hoang Nhan Ho ◽  
Ngoc Tuan Hoang ◽  
Thi Minh Nguyet Le

Background: Clotrimazole (CLO) is an imidazole derivative with antifungal activities. The conventional dosage forms for oral or topical administration have some disadvantages such as drug adverse reaction for long-term use, repeated doses daily due to short half-life. The aim of this study was to prepare gel containing CLO-loaded nanoparticles to increase drug solubility, enhance bioavailability, especially for a sustained drug release. Materials and methods: Eudragit RS 100 nanoparticles were prepared by the nanoprecipitation method, then was mixed with gel forming excipient. Gel containing CLO-loaded nanoparticles was characterized in terms of appearance, pH, particle size, PDI, encapsulation efficiency (EE), in vitro drug release. Results: The best formulation of gel containing 1% of CLO-loaded nanoparticles with 0.3% of Carbopol 934P, 5% of glycerin was smooth, homogenous, and particle size, PDI, EE, drug release of 154.6 ± 3.6 nm, 0.153 ± 0.011, 67.62 ± 0.89%, 51.46 ± 1.10% (after 24 hours). Conclusion: Gel containing CLO-loaded nanoparticles is a promising drug delivery system for the topical treatment of fungal infections. Key words: clotrimazole, Eudragit RS 100, fungal infection, nanoparticle, topical treatment

Author(s):  
ARVIND GANNIMITTA ◽  
PRATHIMA SRINIVAS ◽  
VENKATESHWAR REDDY A ◽  
PEDIREDDI SOBHITA RANI

Objective: The main objective of this study was to prepare and evaluate the nanocrystal formulation of docetaxel. Methods: Docetaxel nanocrystals were formulated to improve the water solubility. Docetaxel nanocrystals were prepared by nanoprecipitation method using Tween 80, egg lecithin, and povidone C-12 as stabilizers and poly(lactic-co-glycolic acid) (PLGA) as polymer in acceptable limits. A total of 16 formulations were prepared by changing stabilizer and polymer ratios. The prepared nanocrystals were characterized by particle size, zeta potential, crystalline structure, surface morphology, assay, saturation solubility, and in vitro drug release. Results: Based on particle size, polydispersity index, and zeta potential data, four formulations were optimized. The formulation containing Tween 80 as stabilizer has shown lowest particle size and better drug release than the formulations containing egg lecithin and povidone C-12 as stabilizers. The formulation containing Tween 80 and PLGA has shown still lower sized particles than the Tween 80 alone and exhibited prolonged sustained drug release. The release kinetics of formulations containing Tween 80 and PLGA followed zero-order release kinetics and formulations containing egg lecithin and povidone C-12 followed Higuchi diffusion (non-Fickian). Conclusion: From the study, we concluded that as the type and concentration of stabilizer changed the size and shape of the crystals were also changed and the formulations showed sustained drug release with non-Fickian diffusion.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Sanjay Dey ◽  
Soumen Pramanik ◽  
Ananya Malgope

The aim of the current study was to formulate and optimize the formulation on the basis of in vitro performance of microsphere. A full factorial design was employed to study the effect of independent variables, polymer-to-drug ratio () and stirring speed (), on dependent variables, encapsulation efficiency, particle size, and time to 80% drug release. The best batch exhibited a high entrapment efficiency of 70% and mean particle size 290 μm. The drug release was also sustained for more than 12 hours. The study helped in finding the optimum formulation with excellent sustained drug release.


Author(s):  
Vijay R Chakote ◽  
◽  
Ms.Deepali R. Wagh ◽  
Mr. Rahul S. Waghmare ◽  
Umesh T. Jadhao ◽  
...  

Ketoconazole Nanosponges were prepared by using Hyper cross linked β-cyclodextrin method by using different concentration of cross-linker. Diphenyl carbonate was used as the cross linking polymer. Nanosponge formulations were prepared by using β-CD: cross linker ratios of 1:15, 1:10, 1:5 and 1:3.Thepreparednanosponges were evaluated for percentage yield, incorporation efficiency, particle size, drug polymer compatibility, scanning electron microscopy andin-vitrodrugrelease.SEM studies confirmed their porous structure with number of nano channels. The FTIR spectra showed stable character of Ketoconazole in mixture of polymers and revealed the absence of drug polymer interactions. DSC study revealed that drug was involved in complexation with nanosponges. The average particle size of Ketoconazole nanoparticles was found to be in the range of 78.81± 0.20 nm to336.02 ± 0.124nm.The drug release from nanosponges was found to extended upto 8hr. 82 to 92%.The nano sponges were formulated into gel using Carbopol 940Batches G1 to G4 were prepared by incorporating nanosponges equivalent to 6%w/w of ketoconazole in different polymer concentrations respectively and evaluated for Percent drug content, Viscosity study, Spreadability study, In vitro diffusion studies. Nanosponge gel G1 showed the optimum pH, viscosity, Spread ability and In vitro release. Drug diffusion from the nanosponge loaded gel formulations was show sustained rate. A sustained release topical drug delivery of Ketoconazole developed as a nanosponge loaded gel offers solubilizing matrix for the drug, served as a local depot for sustained drug release and provided a rate limiting matrix barrier for modulation of drug release.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3433
Author(s):  
Muhammad Imran Asad ◽  
Dildar Khan ◽  
Asim ur Rehman ◽  
Abdelhamid Elaissari ◽  
Naveed Ahmed

Methotrexate (MTX), the gold standard against psoriasis, poses severe problems when administered systemically viz increased toxicity, poor solubility and adverse reactions. Hence, a topical formulation of MTX for the management of psoriasis can be an effective approach. The present study aimed to develop an MTX based nanoparticle-loaded chitosan hydrogel for evaluating its potential efficacy in an imiquimod-induced psoriatic mice model. MTX-NPs loaded hydrogel was prepared and optimized using the o/w emulsion solvent evaporation method. Particle size, zeta potential, entrapment efficiency, in vitro drug release, ex vivo permeation, skin irritation and deposition studies were performed. Psoriatic Area and Severity Index (PASI) score/histopathological examinations were conducted to check the antipsoriatic potential of MTX-NPs loaded hydrogel using an imiquimod (IMQ)-induced psoriatic model. Optimized MTX-NPs showed a particle size of 256.4 ± 2.17 nm and encapsulation efficiency of 86 ± 0.03%. MTX-NPs loaded hydrogel displayed a 73 ± 1.21% sustained drug release in 48 h. Ex vivo permeation study showed only 19.95 ± 1.04 µg/cm2 of drug permeated though skin in 24 h, while epidermis retained 81.33% of the drug. A significant decrease in PASI score with improvement to normalcy of mice skin was observed. The developed MTX-NPs hydrogel displayed negligible signs of mild hyperkeratosis and parakeratosis, while histopathological studies showed healing signs of mice skin. So, the MTX-NPs loaded hydrogel can be a promising delivery system against psoriasis.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kefilwe Matlhola ◽  
Lebogang Katata-Seru ◽  
Lesego Tshweu ◽  
Indra Bahadur ◽  
Gertrude Makgatho ◽  
...  

The objective of present study was to develop an optimized polymeric nanoparticle system for the antiretroviral drug tenofovir. A modified nanoprecipitation method was used to prepare Eudragit RS PO nanoparticles of the drug. The effect of amount of polymer, surfactant concentration, and sonication time on particle size, particle distribution, encapsulation efficiency (EE), and zeta potential were assessed and optimized utilizing a three-factor, three-level Box-Behnken Design (BBD) of experiment. Fifteen formulations of nanoparticles were prepared as per BBD and evaluated for particle size, polydispersity index (PDI), EE, and zeta potential. The results showed that the measured mean particle sizes were in the range of 233 to 499 nm, PDI ranged from 0.094 to 0.153, average zeta potential ranged from −19.9 to −45.8 mV, and EE ranged between 98 and 99%. The optimized formulation was characterized forin vitrodrug release and structural characterization. The mean particle size of this formulation was 233 nm with a PDI of 0.0107. It had a high EE of 98% and average zeta potential of −35 mV, an indication of particle stability. The FTIR showed some noncovalent interactions between the drug and polymer but a sustained release was observedin vitrofor up to 80 hours.


Author(s):  
JAYASHRI A. PATIL ◽  
RAVINDRA B. PATIL

Objective: Ocular inserts offer many advantages over conventional dosage forms, like increased ocular residence, the possibility of releasing a drug at a slow and constant rate, accurate dosing, exclusion of preservatives, and increased shelf life. Besifloxacin is a very important drug for the treatment of infectious conjunctivitis. The present study was aimed to formulate and evaluate Besifloxacin Non-Erodible Ocular Insert using Pullulan and polyvinyl pyrrolidone as a drug reservoir, PEG 400 as a plasticizer, and Eudragit RS-100 as a rate-controlling membrane. Methods: Central composite design was employed to study the effect of independent variables, i.e., effects of Pullulan amount (X1) and PVP (X2) on the dependent variables, i.e., % moisture absorption and In vitro diffusion rate. After evaluation of all thirteen batches of ocular insert reservoir formulation, BSF2 and BSF4 were selected as a satisfactory formulation and was sandwiched between rate-controlling membrane, which was made up of Eudragit RS-100 (3 and 5%). Results: The drug content of all formulations was found to be in the range of 95.33 to 99.89 %. In vitro diffusion of Besifloxacin from reservoir formulations (BSF1 to BSF13) was found to be 62.44 to 70.62 %. In vitro diffusion rate of an ocular insert of Besifloxacin can offer benefits such as increasing residence time, prolonging drug release in the eye for 24 h. Eudragit RS-100, as a sustained drug release polymer, showed promising sustained released action. Conclusion: The study concluded that Besifloxacin non-erodible ocular inserts can be successfully developed using Pullulan and polyvinyl pyrrolidone, which will sustain the release of the drug also reduce the frequency of administration, and thereby may help to improve patient compliance.


2021 ◽  
Vol 12 (3) ◽  
pp. 1798-1802
Author(s):  
Gangadhara R. ◽  
Satheesh K. P. ◽  
Devanna N. ◽  
Sasikala L. ◽  
Vandavasi Koteswara Rao

The aim of this analysis is to see how effective a Nanosponge-loaded topical gel is at distributing flurbiprofen through the skin. Flurbiprofen was entrapped in Nanosponge and formulated into a gel for this purpose. Flurbiprofen Nanosponges were developed by solvent evaporation using pluronic F68 and ethyl cellulose. The particle size and entrapment quality were discovered to be in the range of 200-410 nm and 90.94% to 98.68%, respectively. For gel formulation, Nanopsonges with high entrapment efficiency and the smallest particle size (F3) were chosen based on the characterization. Using Guar gum, Carbopol, and HPMC K4M, a total of 6 formulations were produced to determine the sustained drug release and were tested for physiochemical tests, producing positive results. According to the findings of the above in vitro drug release trials, formulations containing carbopol release more drug at the end of 11 hours than other formulations and follow a zero-order with case II transport mechanism.


Author(s):  
SHIVA KUMAR YELLANKI ◽  
SAI MANOJ A ◽  
MANGILAL T

Objective: The aim of the present research was to prepare metoprolol-loaded nanospheres. Metoprolol-loaded bovine albumin nanospheres were prepared by nanoprecipitation method. Metoprolol is beta-1-adrenergic receptor inhibitor specific to cardiac cells, thus producing negative chronotropic and ionotropic effect. Methods: Metoprolol nanospheres were prepared by nanoprecipitation method, using bovine serum albumin as polymer. The prepared nanospheres are evaluated for particle size evaluation, drug entrapment efficiency, and zeta potential. Drug-excipient compatibility was determined using Fourier-transform infrared spectroscopy. In vitro release and solubility of the drug from nanoparticles were determined. Results: The particle size of prepared metoprolol nanospheres was found to be always less than 200 nm. Maximum particle size was found to be 196±2.03 nm of batch 4 nanoparticles. Entrapment efficiency of prepared nanospheres was above 80% and maximum percentage entrapment efficiency was found to be 80.4±0.51%. It was found that the percentage entrapment efficiency and drug release were extended with increase in polymer concentration. Zeta potential of the optimized formulation was found to be −20.4 mV. In vitro drug release studies have shown the prolonged release of 94.5±0.54 up to 10 h. Drug release rate is extended with an increase in polymer concentration. Conclusion: Results have concluded that the albumin nanospheres loaded with metoprolol have reduced the blood pressure within 24 h and the prepared nanospheres are effective compared to other formulations and drug delivery.


Author(s):  
Muhammad Wahab Amjad ◽  
Maria Abdul Ghafoor Raja

Every year millions of new cases of various types of cancers are diagnosed, leading to an alarming rate of fatalities. Mitoxantrone is an anthracenedione antineoplastic agent which is used in the treatment of various types of cancer, mostly acute myeloid leukemia and prostate cancer. In spite of its therapeutic applications, it possesses numerous limitations and side effects including specific targeting and systemic toxicity. Sodium alginate is a biodegradable, mucoadhesive and biocompatible polymer commonly used in drug delivery applications. Glutaraldehyde is a saturated dialdehyde and is used as a polymer cross linker. In this study, mitoxantrone-loaded glutaraldehyde-sodium alginate nanoparticles were developed by ionic gelation method and characterized (determination of particle size, drug entrapment efficiency, drug release and its kinetics) for the delivery of anticancer drugs. The nanoparticles mean particle size was found to be within the acceptable range. The entrapment efficiency was also on the higher side with sustained drug release. The findings of this study reveal promising potential of delivery system and project the way forward for further in vitro and in vivo investigations.


Sign in / Sign up

Export Citation Format

Share Document