scholarly journals Age and Palynological Characteristics of Floodplain Deposits of the Kolyma Lowland (North-East Siberia)

Author(s):  
A. V. Lozhkin ◽  
◽  
P. M. Anderson ◽  

River floodplains, reaching several kilometers in width, are one of the main landscape features of the Kolyma Lowland. Their relationship with other forms of relief - yedoma, alasses, and fragments of river terraces - is seen clearly in the Bolshaya Kuropatoch'ya River basin, which is located in the Lowland between 156°30' E and 157°15' E. The first radiocarbon dating of the floodplain deposits of the Kolyma Lowland was undertaken in a study of an outcrop on the left bank of the Bolshaya Kuropatoch'ya River (71°40' N, 156°45' E). Here floodplain sediments, represented by the alternating layers of alluvial silt and peat with a total thickness of 5 m, were exposed along a steep bank of an oxbow lake. The radiocarbon results show that the formation of the modern floodplain of the Bolshaya Kuropatoch'ya River began at the end of the Middle Holocene and continued during the Late Holocene to the present. Since the vegetation cover of arctic and subarctic regions is characterized by low pollen productivity, the spore-pollen spectra of modern and fossil plant communities often include an increased amount of pollen from plant species exotic to the Arctic, brought to the site by long-distance wind transport. For a more reliable interpretation of the spore- pollen spectra of the floodplain sediments, an analysis of the modern vegetation in the Bolshaya Kuropatoch'ya River basin and in a coastal area bordering the East Siberian Sea (about 71°05' N) was carried out, accompanied by an herbarium collection. The radiocarbon-dated palynological data indicate the development of the modern Betula-Salix shrub-herbaceous tundra during the second half of the Holocene. The establishment of this vegetation community reflects the replacement of an earlier Betula forest-tundra, which had prevailed in the northern regions of Western Beringia during the Early Holocene and included Duschekia fruticosa and large shrub species of Salix. Such dramatic changes in the vegetation cover were associated with the rise in sea level about 7.000-6.000 years ago, when seas approached modern levels. This change, in turn, led to a decrease in the contrast of summer and winter temperatures and, thus, to a decrease in the continentality of the climate and a significant reduction in the growing season in the coastal regions of the East Siberian Sea.

2018 ◽  
Vol 17 (2) ◽  
pp. 230-238 ◽  
Author(s):  
Ehlana G. Stell ◽  
Jan Jeffrey Hoover ◽  
Bryan A. Cage ◽  
Darrin Hardesty ◽  
Glenn R. Parsons

2020 ◽  
Vol 13 (1) ◽  
pp. 183-194 ◽  
Author(s):  
Alexey Yu. Sidorchuk ◽  
Tatiana A. Matveeva

The net of dry valleys, gullies and shallow hollows is typical for the East European Plain. Dense vegetation usually covers their bottoms and slopes, so the modern erosion there is negligible in the pristine conditions. This erosion landscape formed in periglacial conditions during the terminations of the last two glaciations. The same kind of the erosion landscape is typical for the Arctic regions, especially for the Yamal, Gydan, and Tazovsky peninsulas. The size and the density of such valleys and gullies are quite similar to those existing on the East European Plain, but these erosion features are active there, especially in the conditions of natural or anthropogenic deterioration of the vegetation cover. As the density of dry valley network is an indicator of hydrological conditions in the river basin, the landscapes of the Arctic regions can be used as the modern analogs of the territories with the past periglacial erosion.The recent hydrological characteristics of the west-central Yamal Peninsula were used to estimate the parameters of erosion network at the Khoper River basin, formed in periglacial conditions. For these purposes gully erosion and thermoerosion model GULTEM was verified and calibrated based on the observation of the modern processes on the Yamal Peninsula. The meteorological characteristics were taken from ERA-Interim Reanalysis grid. To calculate the flow characteristics a synthetic hydrological model was used. These verified and calibrated models were used to find the most suitable characteristics of climate and vegetation cover, which can explain the structure and density of the Perepolye dry valley in the Khoper River basin. This dry valley with the main trunk length of 6400 m was formed at the end of the Late Valdai Glaciation (MIS 2). The conditions required for the formation of a periglacial gully of such length were estimated with the GULTEM model. The critical velocity of erosion initiation was within the range 0.8-0.9 m/s, and the surface runoff depth was close to the recent one on the Yamal Peninsula (330 mm). The system of shallow hollows in the Perepolye catchment (the gullies formed at the end of the Moscow Glaciation, MIS 6) is denser and longer than the dry valley system, and the modelling estimates showed that the surface runoff during that period was almost 3.3 times more than the recent one on the Yamal Peninsula. 


2021 ◽  
Author(s):  
Guanglin He ◽  
Mengge Wang ◽  
Xing Zou ◽  
Renkuan Tang ◽  
Hui-Yuan Yeh ◽  
...  

North China and South Siberia, mainly populated by Altaic-speaking populations, possess extensive ethnolinguistic diversity and serve as the crossroad for the initial peopling of America and western-eastern trans-continental communication. Yet, the complex scenarios of genetic origin, population structure, and admixture history of North-East Asia remain to be fully characterized, especially for Mongolic people in China with a genome-wide perspective. Thus, we genotyped genome-wide SNPs for 510 individuals from 38 Chinese Mongolic, Tungusic, and Sinitic populations to explore the sharing alleles and haplotypes within the studied groups and following merged it with 3508 modern and ancient Eurasian individuals to reconstruct the deep evolutionary and natural selection history of northern East Asians. We identified significant substructures within Altaic-speaking populations with the primary common ancestry linked to the Neolithic northern East Asians: Western Turkic people harbored more western Eurasian ancestry; Northern Mongolic people in Siberia and eastern Tungusic people in Amur River Basin (ARB) possessed dominant Neolithic Mongolian Plateau (MP) or ARB ancestry; Southern Mongolic people in China owned obvious genetic impact from Neolithic Yellow River Basin (YRB) farmers. Additionally, we found the differentiated admixture history between western and eastern Mongolians and geographically close Northeast Hans: the former received a genetic impact from western Eurasians and the latter retained the dominant YRB and ARB Neolithic ancestry. Moreover, we demonstrated that Kalmyk people from the northern Caucasus Mountain possessed a strong genetic affinity with Neolithic MP people, supporting the hypothesis of their eastern Eurasian origin and long-distance migration history. We also illuminated that historic pastoral empires in the MP contributed considerably to the gene pool of northern Mongolic people but rarely to southern ones. We finally found natural signatures in Mongolians associated with alcohol metabolism. Generally, our results not only illuminated that complex population migration and admixture of Neolithic ancestral sources from the MP or ARB played an important role in the spread of Altaic-speaking populations and Proto-Altaic language, which partly supported the Northeast Asia-origin hypothesis, but also demonstrated that the observed multi-sources of genetic diversity contributed significantly to the modern existing extensive ethnolinguistic diversity in North-East Asia.


2017 ◽  
Vol 114 (34) ◽  
pp. 9152-9157 ◽  
Author(s):  
Bastiaan Star ◽  
Sanne Boessenkool ◽  
Agata T. Gondek ◽  
Elena A. Nikulina ◽  
Anne Karin Hufthammer ◽  
...  

Knowledge of the range and chronology of historic trade and long-distance transport of natural resources is essential for determining the impacts of past human activities on marine environments. However, the specific biological sources of imported fauna are often difficult to identify, in particular if species have a wide spatial distribution and lack clear osteological or isotopic differentiation between populations. Here, we report that ancient fish-bone remains, despite being porous, brittle, and light, provide an excellent source of endogenous DNA (15–46%) of sufficient quality for whole-genome reconstruction. By comparing ancient sequence data to that of modern specimens, we determine the biological origin of 15 Viking Age (800–1066 CE) and subsequent medieval (1066–1280 CE) Atlantic cod (Gadus morhua) specimens from excavation sites in Germany, Norway, and the United Kingdom. Archaeological context indicates that one of these sites was a fishing settlement for the procurement of local catches, whereas the other localities were centers of trade. Fish from the trade sites show a mixed ancestry and are statistically differentiated from local fish populations. Moreover, Viking Age samples from Haithabu, Germany, are traced back to the North East Arctic Atlantic cod population that has supported the Lofoten fisheries of Norway for centuries. Our results resolve a long-standing controversial hypothesis and indicate that the marine resources of the North Atlantic Ocean were used to sustain an international demand for protein as far back as the Viking Age.


2020 ◽  
Author(s):  
edith eishoeei ◽  
Mirhassan Miryaghoubzadeh

<p>Normalized Difference Water Index (NDWI) has been widely used to detect water bodies and enhance them in the satellite imagery. In order to determine water bodies in Landsat TM, Mid-Infrared and Green bands are used but this combination is often encountered with vegetation, soil and build-up land noises and the water bodies area was not calculated accurately and most of the time the results are higher than the actual area and was overestimated, NDWI does not remove soil and vegetation noises completely because of using the NIR band reflection, therefore, to eliminate these noises, Modified Normalized Difference Water Index (MNDWI) with different bands in Landsat TM such as Shortwave and Near-Infrared bands has been used and best image that shows water bodies more accurate has been provided. We need to test different band combination and also different NDWI and MNDWI indexes in the range of Red, Near-Infrared, Shortwave Infrared and Mid-Infrared to determine the best performing index. For this purpose, Gorganroud river basin was selected as study area, which is located in north-east of Iran and is one of the largest rivers in Iran and because of 2 dams located in the river basin and long distance of river, studying water bodies could be easier in comparing with other river basins of Iran. we compared NDWI and MNDWI indices and results shown that MNDWI index using Landsat TM bands Green and Mid-infrared has higher accuracy than NDWI and other calculated indices with different bands of Landsat TM. It can remove the vegetation, soil and build-up noises better than NDWI and water bodies can be shown clearly. The MNDWI is more suitable to extract water bodies and study the information of water regions with dominating the soil, vegetation and build-up land noises because of its advantage in reducing or even removing those noises over NDWI.</p><p><strong>Key words:</strong> Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), Landsat 5, water bodies, Gorganroud river basin</p>


Think India ◽  
2019 ◽  
Vol 22 (2) ◽  
pp. 296-304
Author(s):  
Biplab Tripathy ◽  
Tanmoy Mondal

India is a subcontinent, there huge no of people lived in river basin area. In India there more or less 80% of people directly or indirectly depend on River. Ganga, Brahamputra in North and North East and Mahanadi, Govabori, Krishna, Kaveri, Narmoda, Tapti, Mahi in South are the major river basin in India. There each year due to flood and high tide lots of people are suffered in river basin region in India. These problems destroy the socio economic peace and hope of the people in river basin. There peoples are continuously suffered by lots of difficulties in sort or in long term basis. Few basin regions are always in high alert at the time of monsoon seasons. Sometime due to over migration from basin area, it becomes empty and creates an ultimate loss of resources in India and causes a dis-balance situation in this area.


Palaeobotany ◽  
2019 ◽  
Vol 10 ◽  
pp. 13-179
Author(s):  
L. B. Golovneva

The Chingandzha flora comes from the volcanic-sedimentary deposits of the Chingandzha Formation (the Okhotsk-Chukotka volcanic belt, North-East of Russia). The main localities of the Chingandzha flora are situated in the Omsukchan district of the Magadan Region: on the Tap River (basin of the middle course of the Viliga River), on the Kananyga River, near the mouth of the Rond Creek, and in the middle reaches of the Chingandzha River (basin of the Tumany River). The Chingandzha flora includes 23 genera and 33 species. Two new species (Taxodium viligense Golovn. and Cupressinocladus shelikhovii Golovn.) are described, and two new combinations (Arctopteris ochotica (Samyl.) Golovn. and Dalembia kryshtofovichii (Samyl.) Golovn.) are created. The Chingandzha flora consists of liverworts, horsetails, ferns, seed ferns, ginkgoaleans, conifers, and angiosperms. The main genera are Arctop teris, Osmunda, Coniopteris, Cladophlebis, Ginkgo, Sagenoptepis, Sequoia, Taxodium, Metasequoia, Cupressinocladus, Protophyllocladus, Pseudoprotophyllum, Trochodendroides, Dalembia, Menispermites, Araliaephyllum, Quereuxia. The Chingandzha flora is distinct from other floras of the Okhotsk-Chukotka volcanic belt (OCVB) in predominance of flowering plants and in absence of the Early Cretaceous relicts such as Podozamites, Phoenicopsis and cycadophytes. According to its systematic composition and palaeoecological features, the Chingandzha flora is similar to the Coniacian Kaivayam and Tylpegyrgynay floras of the North-East of Russia, which were distributed at coastal lowlands east of the mountain ridges of the OCVB. Therefore, the age of the Chingandzha flora is determined as the Coniacian. This flora is assigned to the Kaivayam phase of the flora evolution and to the Anadyr Province of the Siberian-Canadian floristic realm. The Chingandzha flora is correlated with the Coniacian Aleeky flora from the Viliga-Tumany interfluve area and with other Coniacian floras of the OCVB: the Chaun flora of the Central Chukotka, the Kholchan flora of the Magadan Region and the Ul’ya flora of the Ul’ya Depression.


2020 ◽  
Vol 9 (4(73)) ◽  
pp. 29-33
Author(s):  
N.S. Bagdaryyn

The article continues the author's research on the toponymy of the North-East of the Sakha Republic, in particular the Kolyma river basin, in the aspect of the interaction of related and unrelated languages. The relevance of this work is defined in the description of local geographical terminology of Yukagir origin, as a valuable and important material in the further study of toponymy of the region. For the first time, the toponymy of the Kolyma river basin becomes the object of sampling and linguistic analysis of toponyms with local geographical terms of Yukagir origin in order to identify and analyze them linguistically. The research was carried out by comparative method, word formation, structural, lexical and semantic analysis. As a result of the research, phonetic and morphological features are revealed, the formation of local geographical terms and geographical names of Yukagir origin is outlined, and previously unrecorded semantic shifts and dialectisms are revealed. The most active in the formation of terms and toponyms is the geographical term iилil / eҕal 'coast‘, which is justified by the representation of the Yukagirs’ coast' home, housing


2021 ◽  
pp. 1-17
Author(s):  
Jef Vandenberghe ◽  
Xun Yang ◽  
Xianyan Wang ◽  
Shejiang Wang ◽  
Huayu Lu

Abstract This paper describes an assemblage of diverse floodplain facies of reworked loess (facies b, c) in a Middle Pleistocene monsoonal setting of the Hanzhong Basin, central China. The vertical and lateral sedimentary sequences show changing energy conditions. Apart from the highest energy in the channel facies (facies a), a relatively high energy floodplain environment (facies b) prevailed in waterlogged conditions, with small, laterally migrating (sub)channels. Facies b generally interfingers with aggrading horizontal sheets of overbank deposits in alluvial pools and swamps in a floodplain with much lower energy (facies c), in which phases of stability (soil formation) occasionally interrupted overbank deposition. Reworked loess forms the main part of the floodplain deposits. The paleosols are considered to have been formed under low hydrodynamic conditions in an interglacial environment. These interglacial conditions follow the commonly assumed glacial conditions of channel facies a. The sedimentary successions in the floodplain show a recurrent composition and cyclicity between wet and dry floodplain sedimentation terminated by stability with soil formation. The cyclic rhythm of stacked high- and low-energy floodplain sediments is attributed to varied intensity of different hydrodynamic flooding events that may have been due to changing monsoonal rainfall or simple intrinsic fluvial behavior.


Sign in / Sign up

Export Citation Format

Share Document