Faculty Opinions recommendation of Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis.

Author(s):  
Arp Schnittger
2003 ◽  
Vol 34 (5) ◽  
pp. 733-739 ◽  
Author(s):  
Keiichiro Hiratsu ◽  
Kyoko Matsui ◽  
Tomotsugu Koyama ◽  
Masaru Ohme-Takagi

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 758
Author(s):  
Sanjay Joshi ◽  
Christian Keller ◽  
Sharyn E. Perry

AGAMOUS-like 15 (AGL15) is a member of the MADS domain family of transcription factors (TFs) that can directly induce and repress target gene expression, and for which promotion of somatic embryogenesis (SE) is positively correlated with accumulation. An ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif of form LxLxL within the carboxyl-terminal domain of AGL15 was shown to be involved in repression of gene expression. Here, we examine whether AGL15′s ability to repress gene expression is needed to promote SE. While a form of AGL15 where the LxLxL is changed to AxAxA can still promote SE, another form with a strong transcriptional activator at the carboxy-terminal end, does not promote SE and, in fact, is detrimental to SE development. Select target genes were examined for response to the different forms of AGL15.


Development ◽  
1999 ◽  
Vol 126 (17) ◽  
pp. 3915-3924 ◽  
Author(s):  
H. Sasaki ◽  
Y. Nishizaki ◽  
C. Hui ◽  
M. Nakafuku ◽  
H. Kondoh

Gli family zinc finger proteins are mediators of Sonic hedgehog (Shh) signaling in vertebrates. The question remains unanswered, however, as to how these Gli proteins participate in the Shh signaling pathway. In this study, regulatory activities associated with the Gli2 protein were investigated in relation to the Shh signaling. Although Gli2 acts as a weak transcriptional activator, it is in fact a composite of positive and negative regulatory domains. In cultured cells, truncation of the activation domain in the C-terminal half results in a protein with repressor activity, while removal of the repression domain at the N terminus converts Gli2 into a strong activator. In transgenic mouse embryos, N-terminally truncated Gli2, unlike the full length protein, activates a Shh target gene, HNF3beta, in the dorsal neural tube, thus mimicking the effect of Shh signal. This suggests that unmasking of the strong activation potential of Gli2 through modulation of the N-terminal repression domain is one of the key mechanisms of the Shh signaling. A similar regulatory mechanism involving the N-terminal region was also found for Gli3, but not for Gli1. When the Shh signal derived from the notochord is received by the neural plate, the widely expressed Gli2 and Gli3 proteins are presumably converted to their active forms in the ventral cells, leading to activation of transcription of their target genes, including Gli1.


2005 ◽  
Vol 25 (23) ◽  
pp. 10379-10390 ◽  
Author(s):  
Franz Oswald ◽  
Michael Winkler ◽  
Ying Cao ◽  
Kathy Astrahantseff ◽  
Soizic Bourteele ◽  
...  

ABSTRACT Notch is a transmembrane receptor that determines cell fates and pattern formation in all animal species. After ligand binding, proteolytic cleavage steps occur and the intracellular part of Notch translocates to the nucleus, where it targets the DNA-binding protein RBP-Jκ/CBF1. In the absence of Notch, RBP-Jκ represses Notch target genes through the recruitment of a corepressor complex. We and others have identified SHARP as a component of this complex. Here, we functionally demonstrate that the SHARP repression domain is necessary and sufficient to repress transcription and that the absence of this domain causes a dominant negative Notch-like phenotype. We identify the CtIP and CtBP corepressors as novel components of the human RBP-Jκ/SHARP-corepressor complex and show that CtIP binds directly to the SHARP repression domain. Functionally, CtIP and CtBP augment SHARP-mediated repression. Transcriptional repression of the Notch target gene Hey1 is abolished in CtBP-deficient cells or after the functional knockout of CtBP. Furthermore, the endogenous Hey1 promoter is derepressed in CtBP-deficient cells. We propose that a corepressor complex containing CtIP/CtBP facilitates RBP-Jκ/SHARP-mediated repression of Notch target genes.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 957-969
Author(s):  
Zhizhou Zhang ◽  
Ushasri Varanasi ◽  
Robert J Trumbly

Abstract In the yeast Saccharomyces cerevisiae, Tup1, in association with Cyc8 (Ssn6), functions as a general repressor of transcription. Tup1 and Cyc8 are required for repression of diverse families of genes coordinately controlled by glucose repression, mating type, and other mechanisms. This repression is mediated by recruitment of the Cyc8-Tup1 complex to target promoters by sequence-specific DNA-binding proteins. We created a library of XhoI linker insertions and internal in-frame deletion mutations within the TUP1 coding region. Insertion mutations outside of the WD domains were wild type, while insertions within the WD domains induced mutant phenotypes with differential effects on the target genes SUC2, MFA2, RNR2, and HEM13. Deletion mutations confirmed previous findings of two separate repression domains in the N and C termini. The cumulative data suggest that the C-terminal repression domain, located near the first WD repeat, plays the dominant role in repression. Although the N-terminal repression domain is sufficient for partial repression, deletion of this region does not compromise repression. Surprisingly, deletion of the majority of the histone-binding domain of Tup1 also does not significantly reduce repression. The N-terminal region containing potential α-helical coiled coils is required for Tup1 oligomerization and association with Cyc8. Association with Cyc8 is required for repression of SUC2, HEM13, and RNR2 but not MFA2 and STE2.


2018 ◽  
Author(s):  
Yoav Lubelsky ◽  
Yosef Shaul

SummeryRFX proteins are a family of conserved DNA binding proteins involved in various, essential cellular and developmental processes. RFX1 is a ubiquitously expressed, dual-activity transcription factor capable of both activation and repression of target genes.The exact mechanism by which RFX1 regulates its target is not known yet. In this work, we show that the C-terminal repression domain of RFX1 interacts with the Serine/Threonine protein phosphatase PP1c, and that interaction with RFX1 can target PP1c to specific sites in the genome. Given that PP1c was shown to de-phosphorylate several transcription factors, as well as the regulatory C-terminal domain of RNA Polymerase II the recruitment of PP1c to promoters may be a mechanism by which RFX1 regulates the target genes.


Development ◽  
2001 ◽  
Vol 128 (10) ◽  
pp. 1805-1815 ◽  
Author(s):  
M. Kobayashi ◽  
R.E. Goldstein ◽  
M. Fujioka ◽  
Z. Paroush ◽  
J.B. Jaynes

Groucho acts as a co-repressor for several Drosophila DNA binding transcriptional repressors. Several of these proteins have been found to contain both Groucho-dependent and -independent repression domains, but the extent to which this distinction has functional consequences for the regulation of different target genes is not known. The product of the pair-rule gene even skipped has previously been shown to contain a Groucho-independent repression activity. In the Even skipped protein, outside the Groucho-independent repression domain, we have identified a conserved C-terminal motif (LFKPY), similar to motifs that mediate Groucho interaction in Hairy, Runt and Huckebein. Even skipped interacts with Groucho in yeast and in vitro, and groucho and even skipped genetically interact in vivo. Even skipped with a mutated Groucho interaction motif, which abolished binding to Groucho, showed a significantly reduced ability to rescue the even skipped null phenotype when driven by the complete even skipped regulatory region. Replacing this motif with a heterologous Groucho interaction motif restored the rescuing function of Even skipped in segmentation. Further functional assays demonstrated that the Even skipped C terminus acts as a Groucho-dependent repression domain in early Drosophila embryos. This novel repression domain was active on two target genes that are normally repressed by Even skipped at different concentrations, paired and sloppy paired. When the Groucho interaction motif is mutated, repression of each target gene is reduced to a similar extent, with some activity remaining. Thus, the ability of Even skipped to repress different target genes at different concentrations does not appear to involve differential recruitment or function of Groucho. The accumulation of multiple domains of similar function within a single protein may be a common evolutionary mechanism that fine-tunes the level of activity for different regulatory functions.


2004 ◽  
Vol 40 ◽  
pp. 157-167 ◽  
Author(s):  
Maria Nilsson ◽  
Karin Dahlman-Wright ◽  
Jan-Åke Gustafsson

For several decades, it has been known that oestrogens are essential for human health. The discovery that there are two oestrogen receptors (ERs), ERalpha and ERbeta, has facilitated our understanding of how the hormone exerts its physiological effects. The ERs belong to the family of ligand-activated nuclear receptors, which act by modulating the expression of target genes. Studies of ER-knockout (ERKO) mice have been instrumental in defining the relevance of a given receptor subtype in a certain tissue. Phenotypes displayed by ERKO mice suggest diseases in which dysfunctional ERs might be involved in aetiology and pathology. Association between single-nucleotide polymorphisms (SNPs) in ER genes and disease have been demonstrated in several cases. Selective ER modulators (SERMs), which are selective with regard to their effects in a certain cell type, already exist. Since oestrogen has effects in many tissues, the goal with a SERM is to provide beneficial effects in one target tissue while avoiding side effects in others. Refined SERMs will, in the future, provide improved therapeutic strategies for existing and novel indications.


Sign in / Sign up

Export Citation Format

Share Document