Faculty Opinions recommendation of Synthetic compound libraries displayed on the surface of encoded bacteriophage.

Author(s):  
David Newman
2000 ◽  
Vol 22 (5) ◽  
pp. 149-157 ◽  
Author(s):  
Ralf Thiericke

Secondary metabolites from plants, animals and microorganisms have been proven to be an outstanding source for new and innovative drugs and show a striking structural diversity that supplements chemically synthesized compounds or libraries in drug discovery programs. Unfortunately, extracts from natural sources are usually complex mixtures of compounds:: often generated in time consuming and for the most part manual processes. As quality and quantity of the provided samples play a pivotal role in the success of high-throughput screening programs this poses serious problems. In order to make samples of natural origin competitive with synthetic compound libraries, we devised a novel, automated sample preparation procedure based on solid-phase extraction (SPE). By making use of a modified Zymark RapidTrace®SPE workstation an easy-to-handle and effective fractionation method has been developed which allows the generation of highquality samples from natural origin, fulfilling the requirements of an integration into high-throughput screening programs.


2019 ◽  
Vol 24 (3) ◽  
pp. 346-361 ◽  
Author(s):  
Carolina B. Moraes ◽  
Gesa Witt ◽  
Maria Kuzikov ◽  
Bernhard Ellinger ◽  
Theodora Calogeropoulou ◽  
...  

According to the World Health Organization, more than 1 billion people are at risk of or are affected by neglected tropical diseases. Examples of such diseases include trypanosomiasis, which causes sleeping sickness; leishmaniasis; and Chagas disease, all of which are prevalent in Africa, South America, and India. Our aim within the New Medicines for Trypanosomatidic Infections project was to use (1) synthetic and natural product libraries, (2) screening, and (3) a preclinical absorption, distribution, metabolism, and excretion–toxicity (ADME-Tox) profiling platform to identify compounds that can enter the trypanosomatidic drug discovery value chain. The synthetic compound libraries originated from multiple scaffolds with known antiparasitic activity and natural products from the Hypha Discovery MycoDiverse natural products library. Our focus was first to employ target-based screening to identify inhibitors of the protozoan Trypanosoma brucei pteridine reductase 1 ( TbPTR1) and second to use a Trypanosoma brucei phenotypic assay that made use of the T. brucei brucei parasite to identify compounds that inhibited cell growth and caused death. Some of the compounds underwent structure-activity relationship expansion and, when appropriate, were evaluated in a preclinical ADME-Tox assay panel. This preclinical platform has led to the identification of lead-like compounds as well as validated hits in the trypanosomatidic drug discovery value chain.


2003 ◽  
Vol 10 (9) ◽  
pp. 847-858 ◽  
Author(s):  
Thomas F. Woiwode ◽  
Jill E. Haggerty ◽  
Rebecca Katz ◽  
Mark A. Gallop ◽  
Ronald W. Barrett ◽  
...  

2005 ◽  
Vol 187 (5) ◽  
pp. 1799-1814 ◽  
Author(s):  
Thomas Bovbjerg Rasmussen ◽  
Thomas Bjarnsholt ◽  
Mette Elena Skindersoe ◽  
Morten Hentzer ◽  
Peter Kristoffersen ◽  
...  

ABSTRACT With the widespread appearance of antibiotic-resistant bacteria, there is an increasing demand for novel strategies to control infectious diseases. Furthermore, it has become apparent that the bacterial life style also contributes significantly to this problem. Bacteria living in the biofilm mode of growth tolerate conventional antimicrobial treatments. The discovery that many bacteria use quorum-sensing (QS) systems to coordinate virulence and biofilm development has pointed out a new, promising target for antimicrobial drugs. We constructed a collection of screening systems, QS inhibitor (QSI) selectors, which enabled us to identify a number of novel QSIs among natural and synthetic compound libraries. The two most active were garlic extract and 4-nitro-pyridine-N-oxide (4-NPO). GeneChip-based transcriptome analysis revealed that garlic extract and 4-NPO had specificity for QS-controlled virulence genes in Pseudomonas aeruginosa. These two QSIs also significantly reduced P. aeruginosa biofilm tolerance to tobramycin treatment as well as virulence in a Caenorhabditis elegans pathogenesis model.


Marine Drugs ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 161
Author(s):  
Masamitsu Harada ◽  
Jun Nagai ◽  
Riho Kurata ◽  
Kenji Shimizu ◽  
Xiaofeng Cui ◽  
...  

Toxoplasma gondii is a major protozoan parasite and infects human and many other warm-blooded animals. The infection leads to Toxoplasmosis, a serious issue in AIDS patients, organ transplant recipients and pregnant women. Neospora caninum, another type of protozoa, is closely related to Toxoplasma gondii. Infections of the protozoa in animals also causes serious diseases such as Encephalomyelitis and Myositis-Polyradiculitis in dogs or abortion in cows. Both Toxoplasma gondii and Neospora caninum have similar nucleoside triphosphate hydrolases (NTPase), NcNTPase and TgNTPase-I in Neospora caninum and Toxoplasma gondii, respectively. These possibly play important roles in propagation and survival. Thus, we targeted the enzymes for drug discovery and tried to establish a novel high-standard assay by a combination of original biochemical enzyme assay and fluorescent assay to determine ADP content. We then validated whether or not it can be applied to high-throughput screening (HTS). Then, it fulfilled criterion to carry out HTS in both of the enzymes. In order to identify small molecules having inhibitory effects on the protozoan enzyme, we also performed HTS using two synthetic compound libraries and an extract library derived from marine bacteria and then, identified 19 compounds and 6 extracts. Nagasaki University collected many extracts from over 18,000 marine bacteria found in local Omura bay, and continues to compile an extensive collection of synthetic compounds from numerous drug libraries established by Japanese chemists.


1999 ◽  
Vol 4 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Ingrid Schmid ◽  
Isabel Sattler ◽  
Susanne Grabley ◽  
Ralf Thiericke

At present, compound libraries from combinatorial chemistry are the major source for high throughput screening (HTS) programs in drug discovery. On the other hand, nature has been proven to be an outstanding source for new and innovative drugs. Secondary metabolites from plants, animals, and microorganisms show a striking structural diversity that supplements chemically synthesized compounds or libraries in drug discovery programs. Unfortunately, extracts from natural sources are usually complex mixtures of compounds, often generated in time-consuming and, for the most part, manual processes. Because quality and quantity of the provided samples play a pivotal role in the success of HTS programs, this poses serious problems. In order to make samples of natural origin competitive with synthetic compound libraries, we devised a novel, automated sample preparation procedure based on solid-phase extraction (SPE). By making use of modified Zymark (Hopkinton, MA) RapidTrace® SPE workstations, we developed an easy-to-handle and effective fractionation method that generates high-quality samples from natural origin, fulfilling the requirements for an integration in high throughput drug discovery programs.


2019 ◽  
Vol 24 (7) ◽  
pp. 755-765 ◽  
Author(s):  
Giovana A. S. Cintra ◽  
Brenno A. D. Neto ◽  
Pedro H. P. R. Carvalho ◽  
Carolina B. Moraes ◽  
Lucio H. Freitas-Junior

The current methodologies used to identify promising new anthelmintic compounds rely on subjective microscopic examination of worm motility or involve genetic modified organisms. We describe a new methodology to detect worm viability that takes advantage of the differential incorporation of the fluorescent molecular marker propidium iodide and the 2,1,3-benzothiadiazole core, which has been widely applied in light technology. The new assay developed could be validated using the “Pathogen Box” library. By use of this bioassay, it was possible to identify three molecules with activity against Caenorhabditis elegans that were previously described as effective in in vitro assays against other pathogens, such as Schistosoma mansoni, Mycobacterium tuberculosis, and Plasmodium falciparum, accelerating the identification of molecules with anthelmintic potential. The current fluorescence-based bioassay may be used for assessing C. elegans viability. The described methodology replaces the subjectivity of previous assays and provides an enabling technology that is useful for rapid in vitro screens of both natural and synthetic compound libraries. It is expected that the results obtained from these robust in vitro screens would select the most effective compounds for follow-up in vivo experimentation with pathogenic helminths.


2019 ◽  
Vol 25 (1) ◽  
pp. 57-69
Author(s):  
Samantha Balboa ◽  
Yanmei Hu ◽  
Frank B. Dean ◽  
James M. Bullard

Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections and has highly developed systems for acquiring resistance against numerous antibiotics. The gene ( lysS) encoding P. aeruginosa lysyl-tRNA synthetase (LysRS) was cloned and overexpressed, and the resulting protein was purified to 98% homogeneity. LysRS was kinetically evaluated, and the Km values for the interaction with lysine, adenosine triphosphate (ATP), and tRNALys were determined to be 45.5, 627, and 3.3 µM, respectively. The kcatobs values were calculated to be 13, 22.8, and 0.35 s−1, resulting in kcatobs/ KM values of 0.29, 0.036, and 0.11 s−1µM−1, respectively. Using scintillation proximity assay technology, natural product and synthetic compound libraries were screened to identify inhibitors of function of the enzyme. Three compounds (BM01D09, BT06F11, and BT08F04) were identified with inhibitory activity against LysRS. The IC50 values were 17, 30, and 27 µM for each compound, respectively. The minimum inhibitory concentrations were determined against a panel of clinically important pathogens. All three compounds were observed to inhibit the growth of gram-positive organisms with a bacteriostatic mode of action. However, two compounds (BT06F11 and BT08F04) were bactericidal against cultures of gram-negative bacteria. When tested against human cell cultures, BT06F11 was not toxic at any concentration tested, and BM01D09 was toxic only at elevated levels. However, BT08F04 displayed a CC50 of 61 µg/mL. In studies of the mechanism of inhibition, BM01D09 inhibited LysRS activity by competing with ATP for binding, and BT08F04 was competitive with ATP and uncompetitive with the amino acid. BT06F11 inhibited LysRS activity by a mechanism other than substrate competition.


2021 ◽  
Author(s):  
E. Alexis Flores-Padilla ◽  
K. Eurídice Juárez-Mercado ◽  
José J. Naveja ◽  
Taewon D. Kim ◽  
Ramón Alain Miranda-Quintana ◽  
...  

The importance of epigenetic drug and probe discovery is on the rise. This is not only paramount to identify and develop therapeutic treatments associated with epigenetic processes but also to understand the underlying epigenetic mechanisms involved in biological processes. To this end, chemical vendors have been developing synthetic compound libraries focused on epigenetic targets to increase the probabilities of identifying promising starting points for drug or probe candidates. However, the chemical contents of these data sets, the distribution of their physicochemical properties, and diversity remain unknown. To fill this gap and make this information available to the scientific community, we report a comprehensive analysis of eleven libraries focused on epigenetic targets containing more than 50,000 compounds. We used well-validated chemoinformatics approaches to characterize these sets, including novel methods such as automated detection of analog series and visual representations of the chemical space based on Constellation Plots and Extended Chemical Space Networks. This work will guide the efforts of experimental groups working on high-throughput and medium-throughput screening of epigenetic-focused libraries. The outcome of this work can also be used as a reference to design and describe novel focused epigenetic libraries.


Sign in / Sign up

Export Citation Format

Share Document