Faculty Opinions recommendation of In vitro interactions of approved and novel drugs against Paecilomyces spp.

Author(s):  
Ana Espinel-Ingroff
2004 ◽  
Vol 48 (7) ◽  
pp. 2727-2729 ◽  
Author(s):  
Montserrat Ortoneda ◽  
Javier Capilla ◽  
F. Javier Pastor ◽  
Isabel Pujol ◽  
Clara Yustes ◽  
...  

ABSTRACT We have evaluated the in vitro activity of 15 combinations of antifungal drugs (amphotericin B, itraconazole, voriconazole, albaconazole, ravuconazole, terbinafine, and micafungin) against four isolates of Paecilomyces variotii and three of P. lilacinus. The interaction of terbinafine with the four azoles was synergistic for 53% of the combinations, while the interactions of both amphotericin B and micafungin with the rest of antifungal agents were mainly indifferent.


2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


Xenobiotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Arnaud Bruyère ◽  
Marc Le Vée ◽  
Elodie Jouan ◽  
Stephanie Molez ◽  
Anne T. Nies ◽  
...  

2000 ◽  
Vol 44 (8) ◽  
pp. 2187-2189 ◽  
Author(s):  
E. J. Giamarellos-Bourboulis ◽  
P. Grecka ◽  
A. Dionyssiou-Asteriou ◽  
H. Giamarellou

ABSTRACT Twenty-six multidrug-resistant Pseudomonas aeruginosaisolates were exposed over time to 300 μg of gamma-linolenic acid or arachidonic acid per ml or to the combination of both acids at 150 μg/ml each with ceftazidime and amikacin with or without albumin to observe the in vitro interactions of the antibiotics. Antibiotics and albumin were applied at their levels found in serum. Synergy between acids and antibiotics was found against 13 isolates, and it was expressed after 5 h of growth in the presence of albumin. The results indicate that further application in experimental infection models is merited.


2021 ◽  
Vol 7 (7) ◽  
pp. 567
Author(s):  
Eyal Ben-Dor Cohen ◽  
Micha Ilan ◽  
Oded Yarden

Marine sponges harbor a diverse array of microorganisms and the composition of the microbial community has been suggested to be linked to holo-biont health. Most of the attention concerning sponge mycobiomes has been given to sponges present in shallow depths. Here, we describe the presence of 146 culturable mycobiome taxa isolated from mesophotic niche (100 m depth)-inhabiting samples of Agelas oroides, in the Mediterranean Sea. We identify some potential in vitro interactions between several A. oroides-associated fungi and show that sponge meso-hyl extract, but not its predominantly collagen-rich part, is sufficient to support hyphal growth. We demonstrate that changes in the diversity of culturable mycobiome constituents occur following sponge transplantation from its original mesophotic habitat to shallow (10 m) waters, where historically (60 years ago) this species was found. We conclude that among the 30 fungal genera identified as associated with A. oroides, Aspergillus, Penicillium and Trichoderma constitute the core mycobiome of A. oroides, and that they persist even when the sponge is transplanted to a suboptimal environment, indicative of the presence of constant, as well as dynamic, components of the sponge mycobiome. Other genera seemed more depth-related and appeared or disappeared upon host’s transfer from 100 to 10 m.


2017 ◽  
Vol 8 ◽  
pp. 1649-1657 ◽  
Author(s):  
Antonín Brož ◽  
Lucie Bačáková ◽  
Pavla Štenclová ◽  
Alexander Kromka ◽  
Štěpán Potocký

Diamond nanoparticles, known as nanodiamonds (NDs), possess several medically significant properties. Having a tailorable and easily accessible surface gives them great potential for use in sensing and imaging applications and as a component of cell growth scaffolds. In this work we investigate in vitro interactions of human osteoblast-like SAOS-2 cells with four different groups of NDs, namely high-pressure high-temperature (HPHT) NDs (diameter 18–210 nm, oxygen-terminated), photoluminescent HPHT NDs (diameter 40 nm, oxygen-terminated), detonation NDs (diameter 5 nm, H-terminated), and the same detonation NDs further oxidized by annealing at 450 °C. The influence of the NDs on cell viability and cell count was measured by the mitochondrial metabolic activity test and by counting cells with stained nuclei. The interaction of NDs with cells was monitored by phase contrast live-cell imaging in real time. For both types of oxygen-terminated HPHT NDs, the cell viability and the cell number remained almost the same for concentrations up to 100 µg/mL within the whole range of ND diameters tested. The uptake of hydrogen-terminated detonation NDs caused the viability and the cell number to decrease by 80–85%. The oxidation of the NDs hindered the decrease, but on day 7, a further decrease was observed. While the O-terminated NDs showed mechanical obstruction of cells by agglomerates preventing cell adhesion, migration and division, the H-terminated detonation NDs exhibited rapid penetration into the cells from the beginning of the cultivation period, and also rapid cell congestion and a rapid reduction in viability. These findings are discussed with reference to relevant properties of NDs such as surface chemical bonds, zeta potential and nanoparticle types.


2001 ◽  
Vol 173 (1-2) ◽  
pp. 109-120 ◽  
Author(s):  
Xin-Yuan Wang ◽  
Katrin Bergdahl ◽  
Anna Heijbel ◽  
Charlotta Liljebris ◽  
John E. Bleasdale

Sign in / Sign up

Export Citation Format

Share Document