Faculty Opinions recommendation of Drosophila Ras/MAPK signalling regulates innate immune responses in immune and intestinal stem cells.

Author(s):  
Laurence Rahme ◽  
Yiorgos Apidianakis
2011 ◽  
Vol 30 (6) ◽  
pp. 1123-1136 ◽  
Author(s):  
Anan Ragab ◽  
Tina Buechling ◽  
Viola Gesellchen ◽  
Kerstin Spirohn ◽  
Anna-Lisa Boettcher ◽  
...  

Author(s):  
Amirhesam Babajani ◽  
Pooya Hosseini-Monfared ◽  
Samin Abbaspour ◽  
Elham Jamshidi ◽  
Hassan Niknejad

The SARS-CoV-2, the virus that causes COVID-19, has infected millions of people worldwide. The symptoms of this disease are primarily due to pulmonary involvement, uncontrolled tissue inflammation, and inadequate immune response against the invader virus. Impaired interferon (IFN) production is one of the leading causes of the immune system’s inability to control the replication of the SARS-CoV-2. Mitochondria play an essential role in developing and maintaining innate cellular immunity and IFN production. Mitochondrial function is impaired during cellular stress, affecting cell bioenergy and innate immune responses. The mitochondrial antiviral-signaling protein (MAVS), located in the outer membrane of mitochondria, is one of the key elements in engaging the innate immune system and interferon production. Transferring healthy mitochondria to the damaged cells by mesenchymal stem cells (MSCs) is a proposed option for regenerative medicine and a viable treatment approach to many diseases. In addition to mitochondrial transport, these cells can regulate inflammation, repair the damaged tissue, and control the pathogenesis of COVID-19. The immune regulatory nature of MSCs dramatically reduces the probability of an immune rejection. In order to induce an appropriate immune response against the SARS-CoV-2, we hypothesize to donate mitochondria to the host cells of the virus. We consider MSCs as an appropriate biological carrier for mitochondria. Besides, enhancing the expression of MAVS protein in MSCs and promoting the expression of SARS-CoV-2 viral spike protein as a specific ligand for ACE2+ cells will improve IFN production and innate immune responses in a targeted manner.


2021 ◽  
Vol 22 (19) ◽  
pp. 10867
Author(s):  
Pasqualina Scala ◽  
Laura Rehak ◽  
Valentina Giudice ◽  
Elena Ciaglia ◽  
Annibale Alessandro Puca ◽  
...  

In severe muscle injury, skeletal muscle tissue structure and functionality can be repaired through the involvement of several cell types, such as muscle stem cells, and innate immune responses. However, the exact mechanisms behind muscle tissue regeneration, homeostasis, and plasticity are still under investigation, and the discovery of pathways and cell types involved in muscle repair can open the way for novel therapeutic approaches, such as cell-based therapies involving stem cells and peripheral blood mononucleate cells. Indeed, peripheral cell infusions are a new therapy for muscle healing, likely because autologous peripheral blood infusion at the site of injury might enhance innate immune responses, especially those driven by macrophages. In this review, we summarize current knowledge on functions of stem cells and macrophages in skeletal muscle repairs and their roles as components of a promising cell-based therapies for muscle repair and regeneration.


Reproduction ◽  
2020 ◽  
Vol 160 (4) ◽  
pp. 547-560
Author(s):  
Bohan Chen ◽  
Chandan Gurung ◽  
Jason Guo ◽  
Chulan Kwon ◽  
Yan-Lin Guo

Recent studies have demonstrated that embryonic stem cells (ESCs) have an underdeveloped innate immune system, but the biological implications of this finding are poorly understood. In this study, we compared the responses of mouse ESCs (mESCs) and mESC differentiated fibroblasts (mESC-FBs) to tumor necrosis factor α (TNFα) and interferons (IFNs). Our data revealed that TNFα, IFNα, IFNβ, or IFNγ alone do not cause apparent effects on mESCs and mESC-FBs, but the combination of TNFα and IFNγ (TNFα/IFNγ) showed toxicity to mESC-FBs as indicated by cell cycle inhibition and reduced cell viability, correlating with the expression of inducible nitric oxide synthase (iNOS). However, none of these effects were observed in mESCs that were treated with TNFα/IFNγ. Furthermore, mESC-FBs, but not mESCs, are vulnerable to cytotoxicity resulting from lipopolysaccharide (LPS)-activated macrophages. The insensitivity of mESCs to cytotoxicity in all cases is correlated with their lack of responses to TNFα and IFNγ. Similar to mESCs, human ESCs (hESCs) and iPSCs (hiPSCs) do not respond to TNFα and are not susceptible to the cytotoxicity of TNFα, IFNβ, or IFNγ alone or in combination that significantly affects human foreskin fibroblast (hFBs) and Hela cells. However, unlike mESCs, hESCs and hiPSCs can respond to IFNγ, but this does not cause significant cytotoxicity in hESCs and hiPSCs. Our findings in both mouse and human PSCs together support the hypothesis that attenuated innate immune responses could be a protective mechanism that limits immunologic cytotoxicity resulting from inflammatory and immune responses.


2015 ◽  
Vol 29 (3) ◽  
pp. 119-129 ◽  
Author(s):  
Richard J. Stevenson ◽  
Deborah Hodgson ◽  
Megan J. Oaten ◽  
Luba Sominsky ◽  
Mehmet Mahmut ◽  
...  

Abstract. Both disgust and disease-related images appear able to induce an innate immune response but it is unclear whether these effects are independent or rely upon a common shared factor (e.g., disgust or disease-related cognitions). In this study we directly compared these two inductions using specifically generated sets of images. One set was disease-related but evoked little disgust, while the other set was disgust evoking but with less disease-relatedness. These two image sets were then compared to a third set, a negative control condition. Using a wholly within-subject design, participants viewed one image set per week, and provided saliva samples, before and after each viewing occasion, which were later analyzed for innate immune markers. We found that both the disease related and disgust images, relative to the negative control images, were not able to generate an innate immune response. However, secondary analyses revealed innate immune responses in participants with greater propensity to feel disgust following exposure to disease-related and disgusting images. These findings suggest that disgust images relatively free of disease-related themes, and disease-related images relatively free of disgust may be suboptimal cues for generating an innate immune response. Not only may this explain why disgust propensity mediates these effects, it may also imply a common pathway.


2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
MP Ashton ◽  
I Tan ◽  
L Mackin ◽  
C Elso ◽  
E Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document