Faculty Opinions recommendation of Pushing the envelope in tissue engineering: ex vivo production of thick vascularized cardiac extracellular matrix constructs.

Author(s):  
George Truskey
2015 ◽  
Vol 21 (9-10) ◽  
pp. 1507-1519 ◽  
Author(s):  
Udi Sarig ◽  
Evelyne Bao-Vi Nguyen ◽  
Yao Wang ◽  
Sherwin Ting ◽  
Tomer Bronshtein ◽  
...  

Author(s):  
Danni Gong ◽  
Fei Yu ◽  
Meng Zhou ◽  
Wei Dong ◽  
Dan Yan ◽  
...  

Extracellular matrix (ECM) hydrogels provide advantages such as injectability, the ability to fill an irregularly shaped space, and the adequate bioactivity of native matrix. In this study, we developed decellularized cartilage ECM (dcECM) hydrogels from porcine ears innovatively via the main method of enzymatic digestion and verified good biocompatible properties of dcECM hydrogels to deliver chondrocytes and form subcutaneous cartilage in vivo. The scanning electron microscopy and turbidimetric gelation kinetics were used to characterize the material properties and gelation kinetics of the dcECM hydrogels. Then we evaluated the biocompatibility of hydrogels via the culture of chondrocytes in vitro. To further explore the dcECM hydrogels in vivo, grafts made from the mixture of dcECM hydrogels and chondrocytes were injected subcutaneously in nude mice for the gross and histological analysis. The structural and gelation kinetics of the dcECM hydrogels altered according to the variation in the ECM concentrations. The 10 mg/ml dcECM hydrogels could support the adhesion and proliferation of chondrocytes in vitro. In vivo, at 4 weeks after transplantation, cartilage-like tissues were detected in all groups with positive staining of toluidine blue, Safranin O, and collagen II, indicating the good gelation of dcECM hydrogels. While with the increasing concentration, the tissue engineering cartilages formed by 10 mg/ml dcECM hydrogel grafts were superior in weights, volumes, collagen, and glycosaminoglycan (GAG) content compared to the dcECM hydrogels of 1 mg/ml and 5 mg/ml. At 8 weeks after grafting, dcECM hydrogel grafts at 10 mg/ml showed very similar qualities to the control, collagen I grafts. After 12 weeks of in vivo culture, the histological analysis indicated that 10 mg/ml dcECM hydrogel grafts were similar to the normal cartilage from pig ears, which was the source tissue. In conclusion, dcECM hydrogel showed the promising potential as a tissue engineering biomaterial to improve the regeneration and heal injuries of ear cartilage.


RSC Advances ◽  
2021 ◽  
Vol 11 (37) ◽  
pp. 22544-22555
Author(s):  
Atefeh Safaei-Yaraziz ◽  
Shiva Akbari-Birgani ◽  
Nasser Nikfarjam

The interlacing of biopolymers and synthetic polymers is a promising strategy to fabricate hydrogel-based tissue scaffolds to biomimic a natural extracellular matrix for cell growth.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S34-S34
Author(s):  
Ren Mao ◽  
Genevieve Doyon ◽  
Ilyssa Gordon ◽  
Jiannan Li ◽  
Sinan Lin ◽  
...  

Abstract Background and Aims Creeping fat, the wrapping of mesenteric fat around the bowel wall, is a typical feature of Crohn’s disease, and is associated with stricture formation and bowel obstruction. How creeping fat forms is unknown, and we interrogated potential mechanisms using novel intestinal tissue and cell interaction systems. Methods Tissues from normal, ulcerative colitis, non-strictured and strictured Crohn’s disease intestinal specimens were obtained. Fresh and decellularized tissue, mesenteric fat explants, primary human adipocytes, pre-adipocytes, muscularis propria cells, and native extracellular matrix were used in multiple ex vivo and in vitro systems involving cell growth, differentiation and migration, proteomics, and integrin expression. Results Crohn’s disease muscularis propria cells produced an extracellular matrix scaffold which is in direct spatial and functional contact with the immediately overlaid creeping fat. The scaffold contained multiple proteins, but only fibronectin production was singularly upregulated by TGF-b1. The muscle cell-derived matrix triggered migration of pre-adipocytes out of mesenteric fat, fibronectin being the dominant factor responsible for their migration. Blockade of α5β1 on the pre-adipocyte surface inhibited their migration out of mesenteric fat and on 3D decellularized intestinal tissue extracellular matrix. Conclusion Crohn’s disease creeping fat appears to result from the migration of pre-adipocytes out of mesenteric fat and differentiation into adipocytes in response to an increased production of fibronectin by activated muscularis propria cells. These new mechanistic insights may lead to novel approaches for prevention of creeping fat-associated stricture formation.


2020 ◽  
Vol 6 (3) ◽  
pp. 410-413
Author(s):  
Petra J. Kluger ◽  
Svenja Nellinger ◽  
Simon Heine ◽  
Ann-Cathrin Volz

AbstractThe extracellular matrix (ECM) naturally surrounds cells in humans, and therefore represents the ideal biomaterial for tissue engineering. ECM from different tissues exhibit different composition and physical characteristics. Thus, ECM provides not only physical support but also contains crucial biochemical signals that influence cell adhesion, morphology, proliferation and differentiation. Next to native ECM from mature tissue, ECM can also be obtained from the in vitro culture of cells. In this study, we aimed to highlight the supporting effect of cell-derived- ECM (cdECM) on adipogenic differentiation. ASCs were seeded on top of cdECM from ASCs (scdECM) or pre-adipocytes (acdECM). The impact of ECM on cellular activity was determined by LDH assay, WST I assay and BrdU assay. A supporting effect of cdECM substrates on adipogenic differentiation was determined by oil red O staining and subsequent quantification. Results revealed no effect of cdECM substrates on cellular activity. Regarding adipogenic differentiation a supporting effect of cdECM substrates was obtained compared to control. With these results, we confirm cdECM as a promising biomaterial for adipose tissue engineering.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 386
Author(s):  
Ana Santos ◽  
Yongjun Jang ◽  
Inwoo Son ◽  
Jongseong Kim ◽  
Yongdoo Park

Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naresh Polisetti ◽  
Anke Schmid ◽  
Ursula Schlötzer-Schrehardt ◽  
Philip Maier ◽  
Stefan J. Lang ◽  
...  

AbstractAllogenic transplants of the cornea are prone to rejection, especially in repetitive transplantation and in scarred or highly vascularized recipient sites. Patients with these ailments would particularly benefit from the possibility to use non-immunogenic decellularized tissue scaffolds for transplantation, which may be repopulated by host cells in situ or in vitro. So, the aim of this study was to develop a fast and efficient decellularization method for creating a human corneal extracellular matrix scaffold suitable for repopulation with human cells from the corneal limbus. To decellularize human donor corneas, sodium deoxycholate, deoxyribonuclease I, and dextran were assessed to remove cells and nuclei and to control tissue swelling, respectively. We evaluated the decellularization effects on the ultrastructure, optical, mechanical, and biological properties of the human cornea. Scaffold recellularization was studied using primary human limbal epithelial cells, stromal cells, and melanocytes in vitro and a lamellar transplantation approach ex vivo. Our data strongly suggest that this approach allowed the effective removal of cellular and nuclear material in a very short period of time while preserving extracellular matrix proteins, glycosaminoglycans, tissue structure, and optical transmission properties. In vitro recellularization demonstrated good biocompatibility of the decellularized human cornea and ex vivo transplantation revealed complete epithelialization and stromal repopulation from the host tissue. Thus, the generated decellularized human corneal scaffold could be a promising biological material for anterior corneal reconstruction in the treatment of corneal defects.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1749
Author(s):  
Filip Simunovic ◽  
Günter Finkenzeller

Bone is a highly vascularized tissue, and its development, maturation, remodeling, and regeneration are dependent on a tight regulation of blood vessel supply. This condition also has to be taken into consideration in the context of the development of artificial tissue substitutes. In classic tissue engineering, bone-forming cells such as primary osteoblasts or mesenchymal stem cells are introduced into suitable scaffolds and implanted in order to treat critical-size bone defects. However, such tissue substitutes are initially avascular. Because of the occurrence of hypoxic conditions, especially in larger tissue substitutes, this leads to the death of the implanted cells. Therefore, it is necessary to devise vascularization strategies aiming at fast and efficient vascularization of implanted artificial tissues. In this review article, we present and discuss the current vascularization strategies in bone tissue engineering. These are based on the use of angiogenic growth factors, the co-implantation of blood vessel forming cells, the ex vivo microfabrication of blood vessels by means of bioprinting, and surgical methods for creating surgically transferable composite tissues.


Sign in / Sign up

Export Citation Format

Share Document