Faculty Opinions recommendation of Therapeutic opportunities in the vaginal microbiome.

Author(s):  
Ronnie Lamont
Keyword(s):  
GYNECOLOGY ◽  
2014 ◽  
Vol 16 (4) ◽  
pp. 7-11
Author(s):  
N.I. Chernova ◽  
◽  
Yu.N. Perlamutrov ◽  
I.S. Petrova ◽  
◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 100314
Author(s):  
So Yun Park ◽  
Eun Sil Lee ◽  
Sa Ra Lee ◽  
Sung Hoon Kim ◽  
Hee Dong Chae

2021 ◽  
pp. 100081
Author(s):  
Oluwatosin Goje ◽  
Elizabeth O. Shay ◽  
Metabel Markwei ◽  
Roshan Padmanabhan ◽  
Charis Eng

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandra Brunner ◽  
Márta Medvecz ◽  
Nóra Makra ◽  
Miklós Sárdy ◽  
Kinga Komka ◽  
...  

AbstractHuman beta defensins (hBDs) may play an important role in the progression of lichen sclerosus (LS), due to their ability to induce excessive stimulation of extracellular matrix synthesis and fibroblast activation. The genetic ability of the individual to produce defensins, the presence of microbes influencing defensin production, and the sensitivity of microbes to defensins together regulate the formation of an ever-changing balance between defensin levels and microbiome composition. We investigated the potential differences in postmenopausal vaginal microbiome composition and vaginal hBD levels in LS patients compared to non-LS controls. LS patients exhibited significantly lower levels of hBD1 (p = 0.0003), and significantly higher levels of hBD2 (p = 0.0359) and hBD3 (p = 0.0002), compared to the control group. The microbiome of the LS patients was dominated by possibly harmful bacteria including Lactobacillus iners, Streptococcus anginosus or Gardnerella vaginalis known to initiate direct or indirect damage by increasing defensin level production. Our observations highlight that correcting the composition of the microbiome may be applicable in supplementary LS therapy by targeting the restoration of the beneficial flora that does not increase hBD2-3 production.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Christine Landlinger ◽  
Lenka Tisakova ◽  
Vera Oberbauer ◽  
Timo Schwebs ◽  
Abbas Muhammad ◽  
...  

Bacterial vaginosis is characterized by an imbalance of the vaginal microbiome and a characteristic biofilm formed on the vaginal epithelium, which is initiated and dominated by Gardnerella bacteria, and is frequently refractory to antibiotic treatment. We investigated endolysins of the type 1,4-beta-N-acetylmuramidase encoded on Gardnerella prophages as an alternative treatment. When recombinantly expressed, these proteins demonstrated strong bactericidal activity against four different Gardnerella species. By domain shuffling, we generated several engineered endolysins with 10-fold higher bactericidal activity than any wild-type enzyme. When tested against a panel of 20 Gardnerella strains, the most active endolysin, called PM-477, showed minimum inhibitory concentrations of 0.13–8 µg/mL. PM-477 had no effect on beneficial lactobacilli or other species of vaginal bacteria. Furthermore, the efficacy of PM-477 was tested by fluorescence in situ hybridization on vaginal samples of fifteen patients with either first time or recurring bacterial vaginosis. In thirteen cases, PM-477 killed the Gardnerella bacteria and physically dissolved the biofilms without affecting the remaining vaginal microbiome. The high selectivity and effectiveness in eliminating Gardnerella, both in cultures of isolated strains as well as in clinically derived samples of natural polymicrobial biofilms, makes PM-477 a promising alternative to antibiotics for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Andrew Oliver ◽  
Brandon LaMere ◽  
Claudia Weihe ◽  
Stephen Wandro ◽  
Karen L. Lindsay ◽  
...  

ABSTRACT Microbes and their metabolic products influence early-life immune and microbiome development, yet remain understudied during pregnancy. Vaginal microbial communities are typically dominated by one or a few well-adapted microbes which are able to survive in a narrow pH range and are adapted to live on host-derived carbon sources, likely sourced from glycogen and mucin present in the vaginal environment. We characterized the cervicovaginal microbiomes of 16 healthy women throughout the three trimesters of pregnancy. Additionally, we analyzed saliva and urine metabolomes using gas chromatography-time of flight mass spectrometry (GC-TOF MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) lipidomics approaches for samples from mothers and their infants through the first year of life. Amplicon sequencing revealed most women had either a simple community with one highly abundant species of Lactobacillus or a more diverse community characterized by a high abundance of Gardnerella, as has also been previously described in several independent cohorts. Integrating GC-TOF MS and lipidomics data with amplicon sequencing, we found metabolites that distinctly associate with particular communities. For example, cervicovaginal microbial communities dominated by Lactobacillus crispatus have high mannitol levels, which is unexpected given the characterization of L. crispatus as a homofermentative Lactobacillus species. It may be that fluctuations in which Lactobacillus dominate a particular vaginal microbiome are dictated by the availability of host sugars, such as fructose, which is the most likely substrate being converted to mannitol. Overall, using a multi-“omic” approach, we begin to address the genetic and molecular means by which a particular vaginal microbiome becomes vulnerable to large changes in composition. IMPORTANCE Humans have a unique vaginal microbiome compared to other mammals, characterized by low diversity and often dominated by Lactobacillus spp. Dramatic shifts in vaginal microbial communities sometimes contribute to the presence of a polymicrobial overgrowth condition called bacterial vaginosis (BV). However, many healthy women lacking BV symptoms have vaginal microbiomes dominated by microbes associated with BV, resulting in debate about the definition of a healthy vaginal microbiome. Despite substantial evidence that the reproductive health of a woman depends on the vaginal microbiota, future therapies that may improve reproductive health outcomes are stalled due to limited understanding surrounding the ecology of the vaginal microbiome. Here, we use sequencing and metabolomic techniques to show novel associations between vaginal microbes and metabolites during healthy pregnancy. We speculate these associations underlie microbiome dynamics and may contribute to a better understanding of transitions between alternative vaginal microbiome compositions.


Sign in / Sign up

Export Citation Format

Share Document