Faculty Opinions recommendation of The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses.

Author(s):  
Kay Schneitz
PLoS Genetics ◽  
2017 ◽  
Vol 13 (6) ◽  
pp. e1006832 ◽  
Author(s):  
Dieuwertje Van der Does ◽  
Freddy Boutrot ◽  
Timo Engelsdorf ◽  
Jack Rhodes ◽  
Joseph F. McKenna ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Samatha Gunapati ◽  
Ram Naresh ◽  
Sanjay Ranjan ◽  
Deepti Nigam ◽  
Aradhana Hans ◽  
...  

Abstract NAC proteins are plant-specific transcription factors that play essential roles in regulating development and responses to abiotic and biotic stresses. We show that over-expression of the cotton GhNAC2 under the CaMV35S promoter increases root growth in both Arabidopsis and cotton under unstressed conditions. Transgenic Arabidopsis plants also show improved root growth in presence of mannitol and NaCl while transgenic cotton expressing GhNAC2 show reduced leaf abscission and wilting upon water stress compared to control plants. Transgenic Arabidopsis plants also have larger leaves, higher seed number and size under well watered conditions, reduced transpiration and higher relative leaf water content. Micro-array analysis of transgenic plants over-expressing GhNAC2 reveals activation of the ABA/JA pathways and a suppression of the ethylene pathway at several levels to reduce expression of ERF6/ERF1/WRKY33/ MPK3/MKK9/ACS6 and their targets. This probably suppresses the ethylene-mediated inhibition of organ expansion, leading to larger leaves, better root growth and higher yields under unstressed conditions. Suppression of the ethylene pathway and activation of the ABA/JA pathways also primes the plant for improved stress tolerance by reduction in transpiration, greater stomatal control and suppression of growth retarding factors.


Author(s):  
Julien Gronnier ◽  
Christina M. Franck ◽  
Martin Stegmann ◽  
Thomas A. DeFalco ◽  
Alicia Abarca Cifuentes ◽  
...  

ABSTRACTCell surface receptors survey and relay information to ensure the development and survival of multicellular organisms. In the model plant Arabidopsis thaliana, the Catharanthus roseus RLK1-like receptor kinase FERONIA (FER) regulates myriad of biological processes to coordinate development, growth and responses to the environment. We recently showed that FER positively regulates immune signaling by controlling the ligand-induced complex formation between the leucine-rich repeat receptor kinase (LRR-RK) FLAGELLIN SENSING 2 (FLS2) and its co-receptor BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (BAK1/SERK3). In this context, FER function is inhibited by binding of its peptide ligand RAPID ALKALINIZATION FACTOR 23 (RALF23). However, the mechanisms by which FER regulates FLS2-BAK1 complex formation remain unclear. Here, we show that FER-dependent regulation of immune signaling is independent of its kinase activity, indicating that FER rather plays a structural role. FER has been proposed to bind directly to the plant cell wall, but we found that a FER mutant unable to bind pectin is still functional in regulating immune signaling. Instead, FER- and cell wall-associated LEUCINE RICH REPEAT-EXTENSIN proteins are required for this regulation. Using high-resolution live-imaging and single-particle tracking, we observed that FER regulates FLS2 plasma membrane nanoscale dynamics, which may explain its role in controlling ligand-induced FLS2-BAK1 association. We propose that FER acts as an anchoring point connecting cell wall and plasma membrane nano-environments to enable the nucleation of pre-formed receptor/co-receptor complexes at the cell surface.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1946
Author(s):  
Nasser Sewelam ◽  
Mohamed El-Shetehy ◽  
Felix Mauch ◽  
Veronica G. Maurino

Plants are frequently exposed to simultaneous abiotic and biotic stresses, a condition that induces complex responses, negatively affects crop productivity and is becoming more exacerbated with current climate change. In this study, we investigated the effects of individual and combined heat and osmotic stresses on Arabidopsis susceptibility to the biotrophic pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic pathogen Botrytiscinerea (Bc). Our data showed that combined abiotic and biotic stresses caused an enhanced negative impact on plant disease resistance in comparison with individual Pst and Bc infections. Pretreating plants with individual heat or combined osmotic-heat stress strongly reduced the expression of many defense genes including pathogenesis-related proteins (PR-1 and PR-5) and the TN-13 gene encoding the TIR-NBS protein, which are involved in disease resistance towards Pst. We also found that combined osmotic-heat stress caused high plant susceptibility to Bc infection and reduced expression of a number of defense genes, including PLANT DEFENSIN 1.3 (PDF1.3), BOTRYTIS SUSCEPTIBLE 1 (BOS1) and THIONIN 2.2 (THI2.2) genes, which are important for disease resistance towards Bc. The impaired disease resistance against both Pst and Bc under combined abiotic stress is associated with reduced expression of cell wall-related genes. Taken together, our data emphasize that the combination of global warming-associated abiotic stresses such as heat and osmotic stresses makes plants more susceptible to pathogen infection, thus threatening future global food security.


2018 ◽  
Vol 28 (5) ◽  
pp. 666-675.e5 ◽  
Author(s):  
Wei Feng ◽  
Daniel Kita ◽  
Alexis Peaucelle ◽  
Heather N. Cartwright ◽  
Vinh Doan ◽  
...  

2019 ◽  
Author(s):  
Aline Herger ◽  
Shibu Gupta ◽  
Gabor Kadler ◽  
Christina Maria Franck ◽  
Aurélien Boisson-Dernier ◽  
...  

AbstractPlant cell growth requires the coordinated expansion of the protoplast and the cell wall that confers mechanical stability to the cell. An elaborate system of cell wall integrity sensors monitors cell wall structures and conveys information on cell wall composition and growth factors to the cell. LRR-extensins (LRXs) are cell wall-attached extracellular regulators of cell wall formation and high-affinity binding sites for RALF (rapid alkalinization factor) peptide hormones that trigger diverse physiological processes related to cell growth. RALF peptides are also perceived by receptors at the plasma membrane and LRX4 of Arabidopsis thaliana has been shown to also interact with one of these receptors, FERONIA (FER). Here, we demonstrate that several LRXs, including the main LRX protein of root hairs, LRX1, interact with FER and RALF1 to coordinate growth processes. Membrane association of LRXs correlate with binding to FER, indicating that LRXs represent a physical link between intra- and extracellular compartments via interaction with membrane-localized proteins. Finally, despite evolutionary diversification of the LRR domains of various LRX proteins, many of them are functionally still overlapping, indicative of LRX proteins being central players in regulatory processes that are conserved in very different cell types.Author SummaryCell growth in plants requires the coordinated enlargement of the cell and the surrounding cell wall, which is ascertained by an elaborate system of cell wall integrity sensors, proteins involved in the exchange of information between the cell and the cell wall. In Arabidopsis thaliana, LRR-extensins (LRXs) are localized in the cell wall and are binding RALF peptides, hormones that regulate cell growth-related processes. LRX4 also binds the plasma membrane-localized receptor kinase FERONIA (FER), establishing a link between the cell and the cell wall. It is not clear, however, whether the different LRXs of Arabidopsis have similar functions and how they interact with their binding partners. Here, we demonstrate that interaction with FER and RALFs requires the LRR domain of LRXs and several but not all LRXs can bind these proteins. This explains the observation that mutations in several of the LRXs induce phenotypes comparable to a fer mutant, establishing that LRX-FER interaction is important for proper cell growth. Some LRXs, however, appear to influence cell growth processes in different ways, which remain to be identified.


2017 ◽  
Vol 68 (16) ◽  
pp. 4583-4593 ◽  
Author(s):  
David Merz ◽  
Julia Richter ◽  
Martine Gonneau ◽  
Clara Sanchez-Rodriguez ◽  
Tobias Eder ◽  
...  

2019 ◽  
Author(s):  
Ajeet Chaudhary ◽  
Xia Chen ◽  
Jin Gao ◽  
Barbara Leśniewska ◽  
Richard Hammerl ◽  
...  

AbstractPlant cells are encased in a semi-rigid cell wall of complex build. As a consequence, cell wall remodeling is essential for the control of growth and development as well as the regulation of abiotic and biotic stress responses. Plant cells actively sense physico-chemical changes in the cell wall and initiate corresponding cellular responses. However, the underlying cell wall monitoring mechanisms remain poorly understood. In Arabidopsis the atypical receptor kinase STRUBBELIG (SUB) mediates tissue morphogenesis. Here, we show that SUB-mediated signal transduction also regulates the cellular response to a reduction in the biosynthesis of cellulose, a central carbohydrate component of the cell wall. SUB signaling affects early increase of intracellular reactive oxygen species, stress gene induction as well as ectopic lignin and callose accumulation upon exogenous application of the cellulose biosynthesis inhibitor isoxaben. Moreover, our data reveal that SUB signaling is required for maintaining cell size and shape of root epidermal cells and the recovery of root growth after transient exposure to isoxaben. SUB is also required for root growth arrest in mutants with defective cellulose biosynthesis. Genetic data further indicate that SUB controls the isoxaben-induced cell wall stress response independently from other known receptor kinase genes mediating this response, such as THESEUS1 or MIK2. We propose that SUB functions in a least two distinct biological processes: the control of tissue morphogenesis and the response to cell wall damage. Taken together, our results reveal a novel signal transduction pathway that contributes to the molecular framework underlying cell wall integrity signaling.Author SummaryPlant cells are encapsulated by a semi-rigid and biochemically complex cell wall. This particular feature has consequences for multiple biologically important processes, such as cell and organ growth or various stress responses. For a plant cell to grow the cell wall has to be modified to allow cell expansion, which is driven by outward-directed turgor pressure generated inside the cell. In return, changes in cell wall architecture need to be monitored by individual cells, and to be coordinated across cells in a growing tissue, for an organ to attain its regular size and shape. Cell wall surveillance also comes also into play in the reaction against certain stresses, including for example infection by plant pathogens, many of which break through the cell wall during infection, thereby generating wall-derived factors that can induce defense responses. There is only limited knowledge regarding the molecular system that monitors the composition and status of the cell wall. Here we provide further insight into the mechanism. We show that the cell surface receptor STRUBBELIG, previously known to control organ development in Arabidopsis, also promotes the cell’s response to reduced amounts of cellulose, a main component of the cell wall.


Sign in / Sign up

Export Citation Format

Share Document